二氧化碳是全球碳循环的重要介质,具有实现生态系统有机物的转换和造成温室效应的双重属性。将大气圈中被固定或可利用的二氧化碳定义为“灰碳”无法被固定或利用,并留存在大气圈中的二氧化碳定义为“黑碳”。碳中和是人类发展的共识,但在实施过程中面临着政治、资源、技术、市场、能源结构等诸多挑战。提出碳替代、碳减排、碳封存、碳循环是实现碳中和的4种主要途径,其中碳替代将是碳中和的中坚力量。新能源已经成为第3次能源转换的主角,未来将成为碳中和的主导。目前,太阳能、风能、水能、核能、氢能等是新能源的主力军,助力电力部门实现低碳排放;“绿氢”是新能源的后备军,助力工业与交通等领域进一步降低碳排放;人工碳转化技术是连接新能源与化石能源的桥梁,有效降低化石能源的碳排放。预测2030年中国碳达峰的峰值约110×108 t。按照高、中、低3种情景预测2060年中国碳排放将分别降至22×108,33×108,44×108 t。针对中国实现碳中和提出7项实施建议。构建中国新的“三小一大”能源结构,推动实现中国能源“独立自主”战略。图9表2参35
邹才能
,
熊波
,
薛华庆
,
郑德温
,
葛稚新
,
王影
,
蒋璐阳
,
潘松圻
,
吴松涛
. 新能源在碳中和中的地位与作用[J]. 石油勘探与开发, 2021
, 48(2)
: 411
-420
.
DOI: 10.11698/PED.2021.02.18
Carbon dioxide is an important medium of the global carbon cycle, and has the dual properties of realizing the conversion of organic matter in the ecosystem and causing the greenhouse effect. The fixed or available carbon dioxide in the atmosphere is defined as “gray carbon”, while the carbon dioxide that cannot be fixed or used and remains in the atmosphere is called “black carbon”. Carbon neutral is the consensus of human development, but its implementation still faces many challenges in politics, resources, technology, market, and energy structure, etc. It is proposed that carbon replacement, carbon emission reduction, carbon sequestration, and carbon cycle are the four main approaches to achieve carbon neutral, among which carbon replacement is the backbone. New energy has become the leading role of the third energy conversion and will dominate carbon neutral in the future. Nowadays, solar energy, wind energy, hydropower, nuclear energy and hydrogen energy are the main forces of new energy, helping the power sector to achieve low carbon emissions. “Green hydrogen” is the reserve force of new energy, helping further reduce carbon emissions in industrial and transportation fields. Artificial carbon conversion technology is a bridge connecting new energy and fossil energy, effectively reducing the carbon emissions of fossil energy. It is predicted that the peak value of China’s carbon dioxide emissions will reach 110×108 t in 2030. The study predicts that China's carbon emissions will drop to 22×108 t, 33×108 t and 44×108 t, respectively, in 2060 according to three scenarios of high, medium, and low levels. To realize carbon neutral in China, seven implementation suggestions have been put forward to build a new “three small and one large” energy structure in China and promote the realization of China's energy independence strategy.
[1] SCHURER A P, MANN M E, HAWKINS E, et al.Importance of the pre-industrial baseline for likelihood of exceeding Paris goals[J]. Nature Climate Change, 2017, 7(8): 563-567.
[2] MILLAR R J, FUGLESTVEDT J S, FRIEDLINGSTEIN P, et al.Emission budgets and pathways consistent with limiting warming to 1.5 ℃[J]. Nature Geoscience, 2017, 10: 741-747.
[3] IPCC. Summary for policymakers in IPCC special report on the ocean and cryosphere in a changing climate[R]. London: Cambridge University Press, 2019.
[4] IPCC. Climate change 2014: Mitigation of climate change[R]. London: Cambridge University Press, 2014.
[5] NEREM R S, BECKLEY B D, FASULLO J T, et al.Climate-change-driven accelerated sea-level rise detected in the altimeter era[J]. PNAS, 2018, 115(9): 2022-2025.
[6] MARTIN S, RICHARD B A, ERIC R, et al.Twenty-first century sea-level rise could exceed IPCC projections for strong-warming futures[J]. One Earth, 2020, 3(6): 691-703.
[7] IPCC. Special report: Global warming of 1.5℃[EB/OL]. (2018-10-08)[2021-02-19]. https://www.ipcc.ch/sr15/.
[8] 姜联合. 全球碳循环: 从基本的科学问题到国家的绿色担当[J]. 科学, 2021, 73(1): 39-43, 4.
JIANG Lianhe.Global carbon cycle: From fundamental scientific problem to green responsibility[J]. Science, 2021, 73(1): 39-43, 4.
[9] IRNEA. Global renewables outlook: Energy transformation 2050 [EB/OL].(2020-04-12)[2021-02-19]. https://www.irena.org/publications/2020/Apr/Global-Renewables-Outlook-2020.
[10] Energy & Climate Intelligence Unit. Net zero emissions race[EB/OL]. (2020-04-12)[2021-02-19]. https://eciu.net/netzerotracker.
[11] IEA. Global CO2 emissions in 2019[EB/OL].(2020-02-11)[2021-02-19]. https://www.iea.org/articles/global-co2-emissions-in-2019.
[12] IEA. CO2 emissions statistics[EB/OL]. (2020-11-16)[2021-02-19]. https://www.iea.org/subscribe-to-data-services/co2-emissions-statistics.
[13] 潘进军, 江滢, 郭鹏, 等. 中国太阳能资源和环境气象因子影响分析[J]. 科技导报, 2014, 32(20): 15-21.
PAN Jinjun, JIANG Ying, GUO Peng, et al.China’s solar energy resources and environmental meteorological factors impact analysis[J]. Science and Technology Review, 2014, 32(20): 15-21.
[14] 能源日报. 油价暴跌对绿色能源转型的影响[J]. 中外能源, 2020, 25(6): 97.
Energy Daily.The impact of the plunge in oil prices on the green energy transition[J]. Sino-Foreign Energy, 2020, 25(6): 97.
[15] BP. BP energy outlook 2020 edition[R]. London: BP, 2020.
[16] 邹才能, 潘松圻, 党刘栓. 论能源革命与科技使命[J]. 西南石油大学学报(自然科学版), 2019, 41(3): 1-12.
ZOU Caineng, PAN Songqi, DANG Liushuan.On the energy revolution and the mission of science and technology[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(3): 1-12.
[17] IEA. Energy technology perspectives 2020[EB/OL].(2020-09-10) [2021-02-19]. https://www.iea.org/reports/energy-technology-perspectives-2020.
[18] 中国石油经济研究院. 2050年世界能源展望[R]. 北京: 中国石油经济技术研究院, 2020.
China Petroleum Economic Research Institute. World energy outlook 2050[R]. Beijing: PetroChina Research Institute of Economics and Technology, 2020.
[19] WOOD Mackenzie. Renewables in most of Asia Pacific to be cheaper than coal power by 2030[EB/OL]. (2020-11-26)[2021-02-19]. https://www.woodmac.com/press-releases/renewables-in-most-of-asia-pacific-to-be-cheaper-than-coal-power-by-2030/.
[20] IRENA. Renewable power generation costs in 2019[EB/OL].(2020-06-10)[2021-02-19]. https://www.irena.org/publications/2020/Jun/Renewable-Power-Costs-in-2019.
[21] HIS Markit. Hydrogen and renewable gas forum.[EB/OL]. (2020-06-15)[2021-02-19]. https://cdn.ihsmarkit.com/www/pdf/0720/Hydrogen-and-Renewable-Gas-Forum-Brochure.pdf.
[22] AMELANG S, Germany’s national hydrogen strategy[EB/OL]. (2020-06-17)[2021-02-19]. https://www.cleanenergywire.org/factsheets/germanys-national-hydrogen-strategy.
[23] European Commission. EU hydrogen strategy[EB/OL]. (2020-07-09) [2021-02-19]. https://ec.europa.eu/energy/sites/ener/files/hydrogen_strategy.pdf.
[24] STORE & GO.Innovative large-scale energy storage technologies and power-to-gas concepts after optimization[R]. Karlsruhe, Germany: Engler-Bunte-Institute of Karlsruhe Institute of Technology, 2019.
[25] 习近平. 在第七十五届联合国大会一般性辩论上的讲话(2020年9月22日, 北京)[N]. 人民日报海外版, 2020-09-23(2).
XI Jinping. Delivers an important speech at the general debate of the 75th session of the United Nations(UN) general assembly (2020/09/22, Beijing)[N]. People’s Daily Overseas Edition, 2020-09-23(2).
[26] 项目综合报告编写组. 《中国长期低碳发展战略与转型路径研究》综合报告[J]. 中国人口·资源与环境, 2020, 30(11): 1-25.
Project Comprehensive Report Writing Team. Comprehensive report on “China’s long-term low-carbon development strategy and transformation path”[J]. China’s Population, Resources and Environment, 2020, 30(11): 1-25.
[27] 邹才能, 陈艳鹏, 孔令峰, 等. 煤炭地下气化及对中国天然气发展的战略意义[J]. 石油勘探与开发, 2019, 46(2): 195-204.
ZOU Caineng, CHEN Yanpeng, KONG Lingfeng, et al.Underground coal gasification and its strategic significance to the development of natural gas in China[J]. Petroleum Exploration and Development, 2019, 46(2): 195-204.
[28] 中国氢能联盟. 中国氢能源及燃料电池产业白皮书(2019版)[R]. 潍坊: 中国氢能联盟, 2019.
China Hydrogen Energy Alliance. White paper of China hydrogen energy and fuel cell industry (2019 edition)[R]. Weifang: China Hydrogen Energy Alliance, 2019.
[29] 霍传林. 我国近海二氧化碳海底封存潜力评估和封存区域研究[D]. 大连: 大连海事大学, 2014.
HUO Chuanlin.Evaluation of carbon dioxide sequestration potential offshore China and study of sequestration areas[D]. Dalian: Dalian Maritime University, 2014.
[30] ZHAO X L, LIAO X W, HE L P, et al.The evaluation methods for CO2 storage in coal beds in China[J]. Journal of the Energy Institute, 2016, 89(3): 389-399.
[31] 杨红, 赵习森, 康宇龙, 等. 鄂尔多斯盆地CO2地质封存适宜性与潜力评价[J]. 气候变化研究进展, 2019, 15(1): 95-102.
YANG Hong, ZHAO Xisen, KANG Yulong, et al.Evaluation of suitability and potential of CO2 geological storage in Ordos Basin[J]. Climate Change Research Progress, 2019, 15(1): 95-102.
[32] 库力孜那. 新疆吐哈盆地二氧化碳地质封存潜力分析[D]. 乌鲁木齐: 新疆大学, 2016.
KULIZINA. Analysis on the potential of carbon dioxide storage in the Tuha Basin, Xinjiang[D]. Urumqi: Xinjiang University, 2016.
[33] HILL L B, LI X C, WEI N, et al.CO2-EOR in China: A comparative review[J]. International Journal of Greenhouse Gas Control, 2020, 103: 103-173.
[34] 姚金楠. “液体阳光”是实现低碳能源的主要途径[N]. 中国能源报, 2019-10-28(2).
YAO Jinnan. “Liquid Sunshine” is the main way to realize low-carbon energy[N]. China Energy News, 2019-10-28(2).
[35] WANG J, FENG L, PALMER P I, et al.Publisher correction: Large Chinese land carbon sink estimated from atmospheric carbon dioxide data[J]. Nature, 2020, 588(7837): 720-723.