油气勘探

塔河地区奥陶系岩溶斜坡峰丘高地的形成及油气地质意义

  • 张三 ,
  • 金强 ,
  • 孙建芳 ,
  • 魏荷花 ,
  • 程付启 ,
  • 张旭栋
展开
  • 1.中国石油大学(华东)地球科学与技术学院,山东青岛 266580;
    2.中国石化石油勘探开发研究院,北京 100083
张三(1990-),男,陕西安康人,中国石油大学(华东)地球科学与技术学院在读博士研究生,从事石油地质方面研究。地址:山东省青岛市黄岛区长江西路66号,中国石油大学(华东)地球科学与技术学院C座513,邮政编码:266580。E-mail:zspetro@sina.com

收稿日期: 2020-04-20

  修回日期: 2021-02-25

  网络出版日期: 2021-03-19

基金资助

国家自然科学基金-中国石化联合基金项目(U1663204); 国家油气重大专项(2016ZX05014-002-007)

Formation of hoodoo-upland on Ordovician karst slope and its significance in petroleum geology in Tahe area, Tarim Basin, NW China

  • ZHANG San ,
  • JIN Qiang ,
  • SUN Jianfang ,
  • WEI Hehua ,
  • CHENG Fuqi ,
  • ZHANG Xudong
Expand
  • 1. School of Geosciences, China University of Petroleum, Qingdao 266580, China;
    2. Petroleum Exploration and Development Institute, Sinopec, Beijing 100083, China

Received date: 2020-04-20

  Revised date: 2021-02-25

  Online published: 2021-03-19

摘要

基于大量地质、地球物理资料,从断裂特征和地层厚度分析入手,探讨塔河地区奥陶系岩溶斜坡上峰丘高地的成因,并对其缝洞类型与油气分布进行深入剖析。结果表明,海西早期,岩溶斜坡上发育由高耸丘峰与狭长丘谷组成的带状峰丘高地,其与北北东向正花状构造空间展布一致,具继承性演化特征。峰丘高地奥陶系鹰山组残余厚度大于其间残丘谷地,断层-裂缝及缝洞复合体密集发育,厚度可达百米,60%的油井单井累计产油量可达20×104 t,在其丘谷处发现崩塌角砾无序堆积搭建“洞穴”,洞高为1.6~13.5 m,充填率为51.6%。研究认为,走滑挤压背景下的正花状构造形成了岩溶斜坡上峰丘高地的雏形,导致了水系差异分布和岩溶作用差异;相对于富水残丘谷地,贫水的峰丘高地岩溶作用弱,残余地层厚,地貌相对抬高;每逢雨季,大气降水沿其中密集分布的缝隙扩散、渗滤溶蚀,形成错综复杂的网络状缝洞群;加之岩溶斜坡继承性隆升以及北北东向通源断裂的有效配置,油气持续不断向缝洞空间充注、运聚,形成纵向准连续分布、横向片状富集的峰丘体型缝洞油藏,油气丰度大,油井产量高。图11参28

本文引用格式

张三 , 金强 , 孙建芳 , 魏荷花 , 程付启 , 张旭栋 . 塔河地区奥陶系岩溶斜坡峰丘高地的形成及油气地质意义[J]. 石油勘探与开发, 2021 , 48(2) : 303 -313 . DOI: 10.11698/PED.2021.02.07

Abstract

Based on a large number of geological and geophysical data, the formation, fracture-caves types and hydrocarbon distribution of hoodoo-upland on the Ordovician karst slope in the Tahe area, Tarim Basin, are discussed by analyzing faults and strata thickness. The hoodoo-upland was made of high peaks and narrow valleys in the Ordovician karst slope during the Early Hercynian karst period, which were distributed along the NNE positive flower structure and had inherited evolution. The fault-fractures and fracture-vugs complex were extremely developed, with a thickness of 100 m. The cumulative oil production of 60% oil wells was more than 20×104 t per well in the hoodoo-upland, where the residual thickness of the Ordovician Yingshan Formation was greater than karst depressions. Caves formed by the shelter of collapsed breccias were developed in the valleys. They were 1.6 to 13.5 m high, with a filling rate of 51.6%. The positive flower structure under the settings of strike-slip compression controlled the early formation of the hoodoo-upland on the karst slope, resulting in the differences of drainage distribution and karstification. Compared with the water-rich karst valley, the hoodoo-upland with lean water suffered weaker karstification, had thicker residual stratum, and was higher in terrain. In rainy season, the meteoric water flew and corrode along the cracks, forming a complex network of fractures and caves. Combined with inherited uplift and the effective match of the NNE deep faults, oil and gas continuously charged into the reservoir space in the upland, forming the hoodoo fracture-cave reservoir with vertically quasi continuous distribution, high hydrocarbon abundance and high production.

参考文献

[1] FORD D C, WILLIAMS P W.Karst hydrogeology and geomorphology[M]. New York: John Wiley & Sons Ltd, 2007: 1-5.
[2] 袁道先. 岩溶研究的当前任务[J]. 中国岩溶, 1982, 1(1): 4-9.
YUAN Daoxian.Current task of Karst research[J]. Carsologica Sinica, 1982, 1(1): 4-9.
[3] CVIJIĆ J.The Evolution of Lapiés: A study in karst physiography[J]. Geographical Review, 1924, 14(1): 26-49.
[4] WHITE W B.Karst hydrology: Recent developments and open questions[J]. Engineering Geology, 2002, 65(2/3): 85-105.
[5] 新疆油气区石油地质志编写组. 中国石油地质志: 第十五卷[M]. 北京: 石油工业出版社, 1992: 57-120.
Petroleum Geological Annals Compile Group of Xinjiang Oil Field. Petroleum geological annals: Vol.15[M]. Beijing: Petroleum Industry Press, 1992: 57-120.
[6] 康玉柱. 中国海相油气田勘探实例之四: 塔里木盆地塔河油田的发现与勘探[J]. 海相油气地质, 2005, 10(4): 31-39.
KANG Yuzhu.Cases of discovery exploration of marine fields in China (Part4): Tahe Oilfield in Tarim Basin[J]. Marine Origin Petroleum Geology, 2005, 10(4): 31-39.
[7] 焦方正. 塔里木盆地深层碳酸盐岩缝洞型油藏体积开发实践与认识[J]. 石油勘探与开发, 2019, 46(3): 552-558.
JIAO Fangzheng.Practice and knowledge of volumetric development of deep fractured-vuggy carbonate reservoirs in Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(3): 552-558.
[8] 何治亮, 彭守涛, 张涛. 塔里木盆地塔河地区奥陶系储层形成的控制因素与复合-联合成因机制[J]. 石油与天然气地质, 2010, 31(6): 743-752.
HE Zhiliang, PENG Shoutao, ZHANG Tao.Controlling factors and genetic pattern of the Ordovician reservoirs in the Tahe area, Tarim Basin[J]. Oil & Gas Geology, 2010, 31(6): 743-752.
[9] 金强, 田飞. 塔河油田岩溶型碳酸盐岩缝洞结构研究[J]. 中国石油大学学报(自然科学版), 2013, 37(5): 15-21.
JIN Qiang, TIAN Fei.A study on constructions of fracture-cave in karst carbonates in Tahe Oilfield[J]. Journal of China University of Petroleum (Natural Science Edition), 2013, 37(5): 15-21.
[10] 张抗, 王大锐, HUFF B G.塔里木盆地塔河油田奥陶系油气藏储集层特征[J]. 石油勘探与开发, 2004, 31(1): 123-126.
ZHANG Kang, WANG Darui, HUFF B G.Reservoir characterization of the Odovician oil and gas pools in the Tahe Oilfield, Tarim Basin, Northwest China[J]. Petroleum Exploration and Development, 2004, 31(1): 123-126.
[11] 何登发, 周新源, 杨海军, 等. 塔里木盆地克拉通内古隆起的成因机制与构造类型[J]. 地学前缘, 2008, 15(2): 207-221.
HE Dengfa, ZHOU Xinyuan, YANG Haijun, et al.Formation mechanism and tectonic types of intracratonic paleo-uplifts in the Tarim Basin[J]. Earth Science Frontiers, 2008, 15(2): 207-221.
[12] 王萍, 袁向春, 李江龙, 等. 塔河油田4区古地貌对储层分布的影响[J]. 石油与天然气地质, 2011, 32(3): 382-387.
WANG Ping, YUAN Xiangchun, LI Jianglong, et al.Control of palaeogeomorphology on reservoir distribution in Block4 of Tahe Oilfield[J]. Oil & Gas Geology, 2011, 32(3): 382-387.
[13] 李源, 鲁新便, 蔡忠贤, 等. 塔河油田海西早期古水文地貌特征及其对洞穴发育的控制[J]. 石油学报, 2016, 37(8): 1011-1020.
LI Yuan, LU Xinbian, CAI Zhongxian, et al.Hydrogeomorphologic characteristics and its controlling caves in Hercynian, Tahe Oilfield[J]. Acta Petrolei Sinica, 2016, 37(8): 1011-1020.
[14] 金强, 张三, 孙建芳, 等. 塔河油田奥陶系碳酸盐岩岩溶相形成和演化[J]. 石油学报, 2020, 41(5): 513-525.
JIN Qiang, ZHANG San, SUN Jianfang, et al.Formation and evolution of karst facies of Ordovician carbonates in Tahe Oilfield[J]. Acta Petrolei Sinica, 2020, 41(5): 513-525.
[15] 金强, 康逊, 田飞. 塔河油田奥陶系古岩溶径流带缝洞化学充填物成因和分布[J]. 石油学报, 2015, 36(7): 791-798.
JIN Qiang, KANG Xun, TIAN Fei.Genesis of chemical fillings in fracture-caves in paleo-karst runoff zone in Ordovician and their distributions in Tahe Oilfield, Tarim Basin[J]. Acta Petrolei Sinica, 2015, 36(7): 791-798.
[16] 黄继文, 顾忆, 丁勇, 等. 塔里木盆地北部地区上奥陶统烃源条件[J]. 石油与天然气地质, 2012, 33(6): 853-858.
HUANG Jiwen, GU Yi, DING Yong, et al.Upper Ordovician source rocks in northern Tarim Basin[J]. Oil & Gas Geology, 2012, 33(6): 853-858.
[17] 张朝军, 贾承造, 李本亮, 等. 塔北隆起中西部地区古岩溶与油气聚集[J]. 石油勘探与开发, 2010, 37(3): 263-269.
ZHANG Chaojun, JIA Chengzao, LI Benliang, et al.Ancient karsts and hydrocarbon accumulation in the middle and western parts of the north Tarim uplift, NW China[J]. Petroleum Exploration and Development, 2010, 37(3): 263-269.
[18] 田飞, 金强, 李阳, 等. 塔河油田奥陶系缝洞型储层小型缝洞及其充填物测井识别[J]. 石油与天然气地质, 2012, 33(6): 900-908.
TIAN Fei, JIN Qiang, LI Yang, et al.Identification of small fracture-vugs and their fillings through log interpretation in fractured-vuggy Ordovician reservoirs in Tahe Oilfield[J]. Oil & Gas Geology, 2012, 33(6): 900-908.
[19] 张云峰, 谭飞, 屈海洲, 等. 岩溶残丘精细刻画及控储特征分析: 以塔里木盆地轮古地区奥陶系风化壳岩溶储集层为例[J]. 石油勘探与开发, 2017, 44(5): 716-726.
ZHANG Yunfeng, TAN Fei, QU Haizhou, et al.Karst monadnock fine characterization and reservoir control analysis: A case from Ordovician weathering paleokarst reservoirs in Lungu area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(5): 716-726.
[20] 韩剑发, 苏洲, 陈利新, 等. 塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力[J]. 石油学报, 2019, 40(11): 1296-1310.
HAN Jianfa, SU Zhou, CHEN Lixin, et al.Reservoir-controlling and accumulation-controlling of strike-slip faults and exploration potential in the platform of Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(11): 1296-1310.
[21] 朱美衡, 郭建华, 石媛媛, 等. 塔河地区石炭系层序地层及与邻区的对比[J]. 石油勘探与开发, 2005, 32(3): 23-26.
ZHU Meiheng, GUO Jianhua, SHI Yuanyuan, et al.Carboniferous sequence stratigraphy correlation of Tahe and adjacent areas, Tarim Basin[J]. Petroleum Exploration and Development, 2005, 32(3): 23-26.
[22] 张三, 金强, 乔贞, 等. 塔河油田奥陶系构造差异演化及油气地质意义[J]. 中国矿业大学学报, 2020, 49(3): 576-586.
ZHANG San, JIN Qiang, QIAO Zhen, et al.Differential tectonic evolution of the Ordovician and its significance in petroleum geology in main area of Tahe Oilfield[J]. Journal of China University of Mining & Technology, 2020, 49(3): 576-586.
[23] 李兵, 邓尚, 李王鹏, 等. 塔里木盆地塔河地区走滑断裂体系活动特征与油气地质意义[J]. 特种油气藏, 2019, 26(4): 45-51.
LI Bing, DENG Shang, LI Wangpeng, et al.Strike-slip fault system activity and hydrocarbon geology understanding in Tahe of Tarim Basin[J]. Sepcial Oil and Gas Reservoir, 2019, 26(4): 45-51.
[24] WILLEMSE E J M, PEACOCK D C P, AYDIN A. Nucleation and growth of strikeslip faults in limestones from Somerset, UK[J]. Journal of Structural Geology, 1997, 19(12): 1461-1477.
[25] 王建民, 张三. 鄂尔多斯盆地伊陕斜坡上的低幅度构造特征及成因分析[J]. 地学前缘, 2018, 25(2): 246-253.
WANG Jianmin, ZHANG San.Exploring the characteristic and genesis of low amplitude structures on the Yishaan Slope, Ordos Basin[J]. Earth Science Frontiers, 2018, 25(2): 246-253.
[26] 张彬彬, 张军华, 吴永亭. 地震数据低频信号保护与拓频方法研究[J]. 地球物理学进展, 2019, 34(3): 1139-1144.
ZHANG Binbin, ZHANG Junhua, WU Yongting.Research on protection and extension for seismic low frequencies[J]. Progress in Geophysics, 2019, 34(3): 1139-1144.
[27] 丁志文, 汪如军, 陈方方, 等. 断溶体油气藏成因、成藏及油气富集规律: 以塔里木盆地哈拉哈塘油田塔河南岸地区奥陶系为例[J]. 石油勘探与开发, 2020, 47(2): 286-296.
DING Zhiwen, WANG Rujun, CHEN Fangfang, et al.Origin, hydrocarbon accumulation and oil-gas enrichment of fault-karst carbonate reservoirs: A case study of Ordovician carbonate reservoirs in South Tahe area of Halahatang Oilfield, Tarim Basin[J]. Petroleum Exploration and Development, 2020, 47(2): 286-296.
[28] 江同文, 韩剑发, 邬光辉, 等. 塔里木盆地塔中隆起断控复式油气聚集的差异性及主控因素[J]. 石油勘探与开发, 2020, 47(2): 213-224.
JIANG Tongwen, HAN Jianfa, WU Guanghui, et al.Differences and controlling factors of composite hydrocarbon accumulations in the Tazhong uplift, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(2): 213-224.
文章导航

/