油气勘探

东地中海孤立碳酸盐台地沉积建造与油气成藏

  • 温志新 ,
  • 童晓光 ,
  • 高华华 ,
  • 王兆明 ,
  • 陈瑞银 ,
  • 宋成鹏 ,
  • 贺正军 ,
  • 刘祚冬 ,
  • 康海亮
展开
  • 1.中国石油勘探开发研究院,北京 100083;
    2.中国石油国际勘探开发有限公司,北京 100034
温志新(1968-),男,河北承德人,博士,中国石油勘探开发研究院高级工程师,主要从事全球含油气盆地分析与海外新项目评价方面的研究工作。地址:北京市海淀区学院路20号,中国石油勘探开发研究院全球油气资源与勘探规划研究所,邮政编码:100083。E-mail: wenzhixin@petrochina.com.cn

收稿日期: 2020-07-17

  修回日期: 2021-03-08

  网络出版日期: 2021-03-19

基金资助

国家科技重大专项(2016ZX05029001); 中国石油天然气集团科技项目(2019D-4310)

Build-ups and hydrocarbon accumulation of the isolated carbonate platforms in the eastern Mediterranean

  • WEN Zhixin ,
  • TONG Xiaoguang ,
  • GAO Huahua ,
  • WANG Zhaoming ,
  • CHEN Ruiyin ,
  • SONG Chengpeng ,
  • HE Zhengjun ,
  • LIU Zuodong ,
  • KANG Hailiang
Expand
  • 1. Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China;
    2. China National Oil and Gas Exploration and Development Corporation, Beijing 100034, China

Received date: 2020-07-17

  Revised date: 2021-03-08

  Online published: 2021-03-19

摘要

基于区域地质、二维地震及大洋钻探等数据,通过构造精细解释及地震相研究,分析了东地中海埃拉托色尼海山(ESM)及其周缘孤立台地形成、生物礁体类型及油气成藏条件等,指出了未来勘探方向。研究表明,东地中海ESM等系列孤立碳酸盐台地形成演化与新特提斯洋的开合休戚相关,早期为从非洲-阿拉伯板块上裂解出来的垒式断块,形成于中三叠世—早侏罗世陆内裂谷阶段,经过中侏罗世陆间裂谷阶段、晚中侏罗世—晚白垩世土伦期漂移阶段和晚白垩世森诺期—中新世俯冲消减阶段继承性碳酸盐岩沉积建造,晚中新世梅西期以来受新特提斯洋关闭影响发生中—轻度反转改造。受不同古构造背景控制形成3类孤立台地,一是小规模狭窄垒式断块所控制的单个点礁型孤立台地,二是中等规模宽缓垒式断块所控制的单个环礁型孤立台地,三是大规模宽缓古隆起控制形成的多个礁滩复合体型孤立台地。前两类在埃南和埃西凸起上普遍发育,第3类只分布于ESM海山之上。纵向上,受海平面升降影响,ESM古隆起、埃南和埃西凸起上均发育了中侏罗统巴柔阶—上白垩统土伦阶和中新统两套礁体建造。单个点礁型孤立台地和单个环礁型孤立台地已被钻井证实具有优越的天然气成藏条件,ESM海山隆起带上多个礁滩复合体型孤立台地同样值得探索。图11参42

本文引用格式

温志新 , 童晓光 , 高华华 , 王兆明 , 陈瑞银 , 宋成鹏 , 贺正军 , 刘祚冬 , 康海亮 . 东地中海孤立碳酸盐台地沉积建造与油气成藏[J]. 石油勘探与开发, 2021 , 48(2) : 279 -289 . DOI: 10.11698/PED.2021.02.05

Abstract

Based on the data of regional geology, 2D seismic exploration and ocean drilling, the formation of the Eratosthenes Seamount (ESM) and its surrounding isolated platforms, types of organic reefs and hydrocarbon accumulation conditions in the eastern Mediterranean are analyzed through fine tectonic interpretation and seismic facies study, and the future exploration targets are pointed out. The formation and evolution of the ESM and its peripheral isolated platforms are highly related to the open and close of the Neotethyan ocean. The precursors of the ESM and its peripheral isolated platforms are both horst-type fault blocks formed in the Middle Triassic-Early Jurassic intracontinental rift stage. The ESM and its peripheral isolated platforms underwent continued and inherited carbonate build-ups during the Middle Jurassic intercontinental rift stage, the Late Jurassic-Late Cretaceous Turonian passive drift stage, and Late Cretaceous Senonian-Miocene subduction stage, as well as medium-slight inversion transformation beginning in the Late Miocene Messinian caused by the closure of the Neotethyan ocean. Three types of isolated platforms formed controlled by variant paleo-tectonic settings: the first type is composed of a single patch-like reef controlled by a small-scale and narrow horst-type fault block, the second type consists of a single circle-like reef controlled by a middle-scale and wide horst-type fault block, and the third type is comprised of multiple reef-beach complexes controlled by a large-scale and broad paleo-high. The first two types universally developed in the highs of the Aixi and Ainan structure belts, and the third type only developed in the ESM. As a result of fluctuation of sea level, two sequences of reef build-ups, i.e. the Middle Jurassic Bajocian-Upper Cretaceous Turonian and the Miocene, developed in the ESM as well as the highs in the Aixi and Ainan structure belts. Drillings have confirmed that the first two types of isolated platforms with a single patch-like reef and a single circle-like reef have good conditions for natural gas accumulations. The isolated platforms of reef-beach complexes in the ESM also has potentials of natural gas and is worth prospecting.

参考文献

[1] 金振奎, 石良, 高白水, 等. 碳酸盐岩沉积相及相模式[J]. 沉积学报, 2013, 31(6): 965-979.
JIN Zhenkui, SHI Liang, GAO Baishui, et al.Carbonate facies and facies models[J]. Acta Sedimentologica Sinica, 2013, 31(6): 965-979.
[2] 顾家裕, 马锋, 季丽丹, 等. 碳酸盐岩台地类型、特征及主控因素[J]. 古地理学报, 2009, 11(1): 21-27.
GU Jiayu, MA Feng, JI Lidan, et al.Types, characteristics and main controlloing factors of carbonate platform[J]. Journal of Palaeogeography, 2009, 11(1): 21-27.
[3] ESESTIME P, HEWITT A, HODGSON N.Zohr: A newborn carbonate play in the Levantine Basin, East-Mediterranean[J]. Unconventionals & Carbon Capture and Storage, 2016, 34: 87-93.
[4] IHS. Eni SpA finds gas in Calypso prospect in Block 6 offshore southwestern Cyprus[DB/OL]. (2018-02-05)[2020-08-10]. http://connect.ihs.com/Document/Show/cmp.
[5] Offshore Energy Today. Exxon makes gas discovery at Glaucus-1 well, offshore Cyprus[EB/OL]. (2019-02-28)[2020-06-10]. http://www.offshoreenergytoday.com.
[6] BOWMAN S A.Regional seismic interpretation of the hydrocarbon prospectivity of offshore Syria[J]. GeoArabia, 2011, 16(3): 95-124.
[7] BARRIER E, MACHHOUR L, BLAIZOT M.Petroleum systems of Syria[J]. AAPG Memoir, 2014, 106: 335-378.
[8] MONTADERT L, NICOLAIDES S, SEMB P H, et al.Petroleum systems offshore Cyprus[J]. AAPG Memoir, 2014, 106: 301-334.
[9] HODGSON N.Petroleum systems of the levant[R]. San Francisco: Spectrum, 2016.
[10] MART Y, ROBERTSON A H F. Eratosthenes seamount: An oceanographic yardstick recording the Late Mesozoic-Tertiary geological history of the Eastern Mediterranean[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1998, 160: 701-708.
[11] KEMPLER D.Eratosthenes Seamount: The possible spearhead of incipient continental collision in the Eastern Mediterranean[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1998, 160: 709-721.
[12] ROBERTSON A H F, KIDD R B, LVANOV M K, et al. Eratosthenes Seamount: Collisional processes in the Easternmost Mediterranean in relation to the Plio-Quaternary uplift of southern Cyprus[J]. Terra Nova, 1995, 7(2): 254-264.
[13] ROBERTSON A H F. Formation and destruction of the Eratosthenes Seamount, Eastern Mediterranean Sea, and implications for collisional processes[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1998, 160: 681-699.
[14] MAJOR C O, RYAN W B F, RODRÍGUEZ M J J. Evolution of paleoenvironments of Eratosthenes Seamount based on downhole logging integrated with carbonate petrology and reflection profiles[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1998, 160: 483-508.
[15] ROBERTSON A H F. Tectonic significance of the Eratosthenes Seamount: A continental fragment in the process of collision with a subduction zone in the eastern Mediterranean (ocean drilling program Leg 160)[J]. Tectonophysics, 1998, 298(1/2/3): 63-82.
[16] GARFUNKEL Z.Constrains on the origin and history of the Eastern Mediterranean Basin[J]. Tectonophysics, 1998, 298(1/2/3): 5-35.
[17] GARFUNKEL Z.Origin of the Eastern Mediterranean Basin: A reevaluation[J]. Tectonophysics, 2004, 391(1/2/3/4): 11-34.
[18] ROBERTSON A H F. Mesozoic-Tertiary tectonic evolution of the Easternmost Mediterranean area: Integration of marine and land evidence[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1998, 160: 723-782.
[19] ROBERTSON A H F, PARLAK O, KOLLER F. Tethyan tectonics of the Mediterranean region: Some recent advances[J]. Tectonophysics, 2009, 473(1/2): 1-3.
[20] ROBERTSON A H F, PARLAK O, USTAÖMER T. Overview of the Palaeozoic-Neogene evolution of Neotethys in the Eastern Mediterranean region (southern Turkey, Cyprus, Syria)[J]. Petroleum Geoscience, 2012, 18(4): 381-404.
[21] STAMPFLI G M, BOREL G D.A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons[J]. Earth and Planetary Science Letters, 2002, 196(1/2): 17-33.
[22] ERBEK E, DOLMAZ M N.Geophysical researches (gravity and magnetic) of the Eratosthenes Seamount in the Eastern Mediterranean Sea[J]. Acta Geophysica, 2014, 62(4): 762-784.
[23] EPPELBAUM L, KATZ Y.Eastern Mediterranean: Combined geological-geophysical zonation and paleogeodynamics of the Mesozoic and Cenozoic structural-sedimentation stages[J]. Marine and Petroleum Geology, 2015, 65: 198-216.
[24] MAKRIS J, AVRAHAM B, et al.Seismic refraction profiles between Cyprus and Israel and their interpretation[J]. Geophysical Journal of the Royal Astronomical Society, 1983, 75: 575-591.
[25] GRANOT R.Evidence for oceanic crust in the Herodotus Basin[R]. Vienna, Austria: EGU General Assembly Conference, 2016.
[26] COWIE L, KUSZNIR N.Mapping crustal thickness and oceanic lithosphere distribution in the Eastern Mediterranean using gravity inversion[J]. Petroleum Geoscience, 2012, 18(4): 373-380.
[27] LONGACRE M, BENTHAM P, HANBAL I, et al.New crustal structure of the Eastern Mediterranean Basin: Detailed integration and modeling of gravity, magnetic, seismic refraction, and seismic reflection data[C]//EGM 2007 International Workshop Innovation in EM, Grav and Mag Methods: A new perspective for exporation. Capri, Italy: EGM, 2007.
[28] GARDOSH M, WEIMER P, FLEXER A.The sequence stratigraphy of Mesozoic successions in the Levant margin, southwestern Israel: A model for the evolution of southern Tethys margins[J]. AAPG Bulletin, 2011, 95(10): 1763-1793.
[29] HAWIE N, GORINI C, DESCHAMPSC R, et al.Tectono- stratigraphic evolution of the northern Levant Basin (offshore Lebanon)[J]. Marine and Petroleum Geology, 2013, 48: 392-410.
[30] TASSY A, CROUZY E, GORINIA C, et al.Egyptian Tethyan margin in the Mesozoic: Evolution of a mixed carbonate-siliciclastic shelf edge (from Western Desert to Sinai)[J]. Marine and Petroleum Geology, 2015, 68(Part A): 565-581.
[31] GARDOSH M A, GARFUNKEL Z, DRUCKMAN Y, et al.Tethyan rifting in the Levant Region and its role in Early Mesozoic crustal evolution[J]. Geological Society of London, 2010, 341(1): 9-36.
[32] ROBERTSON A H F, KINNAIRD T C. Structural development of the central Kyrenia Range (north Cyprus) in its regional setting in the eastern Mediterranean region[J]. International Journal of Earth Sciences, 2016, 105: 417-437.
[33] SEGEV A, RYBAKOV M.Effects of Cretaceous plume and convergence, and Early Tertiary tectonomagmatic quiescence on the central and southern Levant continental margin[J]. Journal of the Geological Society, London, 2010, 167: 731-749.
[34] OSOZAWA S, SHINJO R, LO C H, et al.Geochemistry and geochronology of the Troodos ophiolite: An SSZ ophiolite generated by subduction initiation and an extended episode of ridge subduction?[J]. Geological Society of America, 2012, 4(6): 497-510.
[35] YOUSEF M, MOUSTAFA A R, SHANN M.Structural setting and tectonic evolution of offshore North Sinai, Egypt[J]. Geological Society of London, 2010, 341(1): 65-84.
[36] HALL J, CALON T J, AKSU A E, et al.Structural evolution of the Latakia Ridge and Cyprus Basin at the front of the Cyprus Arc, Eastern Mediterranean Sea[J]. Marine Geology, 2005, 221(1/2/3/4): 261-297.
[37] CALON T J, AKSU A E, HALL J.The Oligocene-Recent evolution of the Mesaoria Basin (Cyprus) and its western marine extension, Eastern Mediterranean[J]. Marine Geology, 2005, 221(1/2/3/4): 95-120.
[38] ROVERI M, FLECKER R, KRIJGSMAN W, et al.The Messinian Salinity crisis: Past and future of a great challenge for marine sciences[J]. Marine Geology, 2014, 352: 25-58.
[39] KRIJGSMAN W, MEIJER P T.Depositional environments of the Mediterranean “lower evaporites” of the Messinian salinity crisis: Constraints from quantitative analyses[J]. Marine Geology, 2008, 253(3/4): 73-81.
[40] ROUCHY J M, CARUSO A. The Messinian salinity crisis in the Mediterranean Basin: A reassessment of the data and an integrated scenario[J]. Sedimentary Geology, 2006, 188/189: 35-67.
[41] HINSBERGEN D J J V, KAYMAKCI N, SPAKMAN W, et al. Reconciling the geological history of western Turkey with plate circuits and mantle tomography[J]. Earth and Planetary Science Letters, 2010, 297(3/4): 674-686.
[42] BALUSHI A A N, NEUMAIER M, FRASER A J, et al. The impact of the Messinian salinity crisis on the petroleum system of the Eastern Mediterranean: A critical assessment using 2D petroleum system modelling[J]. Petroleum Geoscience, 2016, 22(4): 357-379.
文章导航

/