新能源新领域

深水气井测试过程中水合物流动障碍防治方法

  • 张剑波 ,
  • 王志远 ,
  • 刘书杰 ,
  • 孟文波 ,
  • 孙宝江 ,
  • 孙金声 ,
  • 王金堂
展开
  • 1.中国石油大学(华东)石油工程学院,山东青岛 266580;
    2.中海石油(中国)有限公司湛江分公司,广东湛江 524057;
    3.南方海洋科学与工程广东省实验室(广州),广州 523936
张剑波(1991-),男,重庆江津人,中国石油大学(华东)石油工程学院在读博士研究生,主要从事深水井筒水合物流动保障及水合物开发等方面的研究工作。地址:山东省青岛市黄岛区长江西路66号,中国石油大学(华东)石油工程学院海洋油气工程系,邮政编码:266580。E-mail: zhangjianbo2@163.com

收稿日期: 2020-04-25

  修回日期: 2020-10-09

  网络出版日期: 2020-11-27

基金资助

国家自然科学基金重大项目(51991363); 国家自然科学基金面上项目(51974350); 南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0501); 青年长江学者奖励计划(Q2016135)

A method for preventing hydrates from blocking flow during deep-water gas well testing

  • ZHANG Jianbo ,
  • WANG Zhiyuan ,
  • LIU Shujie ,
  • MENG Wenbo ,
  • SUN Baojiang ,
  • SUN Jinsheng ,
  • WANG Jintang
Expand
  • 1. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
    2. CNOOC Zhanjiang Branch Company, Zhanjiang 524057, China;
    3. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 523936, China

Received date: 2020-04-25

  Revised date: 2020-10-09

  Online published: 2020-11-27

摘要

在探明深水气井测试过程中水合物流动障碍形成机制和演化规律的基础上,改变以往“抑制生成”的思路,基于“允许生成,防止堵塞”的思想,提出了基于安全测试窗口的水合物流动障碍防治方法。研究表明,深水气井测试中水合物生成和沉积会造成管柱有效内径和井口压力逐渐减小,呈现缓变、突变和急变3个典型过程,且存在安全测试窗口。安全测试窗口随测试产量增大而先减小后增大,随水合物抑制剂浓度增大而增大。对于存在不同测试产量的情况,考虑水合物分解和脱落的影响,提出了合理调整低、高产量交叉顺序的测试制度,可进一步降低水合物抑制剂用量,甚至可完全不使用水合物抑制剂。与传统方法相比,基于安全测试窗口的水合物流动障碍防治方法可减少水合物抑制剂用量50%以上。图10表3参42

本文引用格式

张剑波 , 王志远 , 刘书杰 , 孟文波 , 孙宝江 , 孙金声 , 王金堂 . 深水气井测试过程中水合物流动障碍防治方法[J]. 石油勘探与开发, 2020 , 47(6) : 1256 -1264 . DOI: 10.11698/PED.2020.06.19

Abstract

Based on the research of the formation mechanism and evolution rule of hydrate flow obstacle during deep-water gas well testing, a new method for the prevention of hydrate flow obstacle based on safety testing window is proposed by changing the previous idea of "preventing formation" to the idea of "allowing formation, preventing plugging". The results show that the effective inner diameter of the testing tubing and the wellhead pressure decrease gradually with the formation and precipitation of hydrates during deep-water gas well testing, and it presents three typical processes of slow, sudden and surged changes. There is a safety testing window during deep-water gas well testing. The safety testing window of deep-water gas well testing decreases first and then increases with the increase of gas production rate, and increases with the increase of hydrate inhibitor concentrations. In the case with different testing production rates, a reasonable testing order with alternate low and high gas production rates has been proposed to further reduce the dosage of hydrate inhibitor and even avoid the use of hydrate inhibitors considering the decomposition and fall-off of hydrates. Compared with the traditional methods, the new method based on safety testing window can reduce the dosage of hydrate inhibitor by more than 50%.

参考文献

[1] 张亮, 张崇, 黄海东, 等. 深水钻完井天然气水合物风险及预防措施: 以南中国海琼东南盆地QDN-X井为例[J]. 石油勘探与开发, 2014, 41(6): 755-762.
ZHANG Liang, ZHANG Chong, HUANG Haidong, et al. Gas hydrate risks and prevention for deep water drilling and completion: A case study of well QDN-X in Qiongdongnan Basin, South China Sea[J]. Petroleum Exploration and Development, 2014, 41(6): 755-762.
[2] 张功成, 曾清波, 苏龙, 等. 琼东南盆地深水区陵水17-2大气田成藏机理[J]. 石油学报, 2016, 37(S1): 34-46.
ZHANG Gongcheng, ZENG Qingbo, SU Long, et al. Accumulation mechanism of LS 17-2 deep water gas field in Qiongdongnan Basin[J]. Acta Petrolei Sinica, 2016, 37(S1): 34-46.
[3] 张崇, 任冠龙, 董钊, 等. 深水气井测试井筒温度场预测模型的建立及应用[J]. 中国海上油气, 2016, 28(5): 78-84.
ZHANG Chong, REN Guanlong, DONG Zhao, et al. Establishment and application of a wellbore temperature field prediction model for deep water gas well testing[J]. China Offshore Oil and Gas, 2016, 28(5): 78-84.
[4] 邹才能, 杨智, 何东博, 等. 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发, 2018, 45(4): 575-587.
ZOU Caineng, YANG Zhi, HE Dongbo, et al. Theory, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development, 2018, 45(4): 575-587.
[5] 高永海, 刘凯, 赵欣欣, 等. 深水油井测试工况下井筒结蜡区域预测方法[J]. 石油勘探与开发, 2018, 45(2): 333-338.
GAO Yonghai, LIU Kai, ZHAO Xinxin, et al. Prediction of wax precipitation region in wellbore during deep water oil well testing[J]. Petroleum Exploration and Development, 2018, 45(2): 333-338.
[6] 王志远, 孙宝江, 程海清, 等. 深水钻井井筒中天然气水合物生成区域预测[J]. 石油勘探与开发, 2008, 35(6): 731-735.
WANG Zhiyuan, SUN Baojiang, CHENG Haiqing, et al. Prediction of gas hydrate formation region in the wellbore of deepwater drilling[J]. Petroleum Exploration and Development, 2008, 35(6): 731-735.
[7] 李中, 杨进, 王尔钧, 等. 高温高压气井测试期间水合物防治技术研究[J]. 油气井测试, 2011, 20(1): 35-37.
LI Zhong, YANG Jin, WANG Erjun, et al. A study of prevention and control of hydrates During well testing in wells with high temperature and high pressure[J]. Well Testing, 2011, 20(1): 35-37.
[8] 孙长宇, 陈光进, 郭天民. 水合物成核动力学研究现状[J]. 石油学报, 2001, 22(4): 82-86.
SUN Changyu, CHEN Guangjin, GUO Tianmin. The status of the kinetics of hydrate nucleation[J]. Acta Petrolei Sinica, 2001, 22(4): 82-86.
[9] SLOAN E D, KOH C A, SUM A K. Natural gas hydrates in flow assurance[M]. Oxford: Gulf Professional Publishing, 2011.
[10] FU Weiqi, WANG Zhiyuan, ZHANG Jianbo, et al. Investigation of rheological properties of methane hydrate slurry with carboxmethylcellulose[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106504.
[11] WANG Zhiyuan, ZHAO Yang, SUN Baojiang, et al. Modeling of hydrate blockage in gas-dominated systems[J]. Energy Fuels, 2016, 30: 4653-4666.
[12] LIU Wenyuan, HU Jinqiu, LI Xiangfang, et al. Research on evaluation method of wellbore hydrate blocking degree during deepwater gas well testing[J]. Journal of Natural Gas Science and Engineering, 2018, 59: 168-182.
[13] ZHANG Jianbo, WANG Zhiyuan, LIU Shun, et al. Prediction of hydrate deposition in pipelines to improve gas transportation efficiency and safety[J]. Applied Energy, 2019, 253: 113521.
[14] JASSIM E, ABDI M A, MUZYCHKA Y, et al. A new approach to investigate hydrate deposition in gas-dominated flowlines[J]. Journal of Natural Gas Science and Engineering, 2010, 2: 163-177.
[15] 李相方, 刘文远, 刘书杰, 等. 深水气井测试求产阶段管柱内天然气水合物防治方法[J]. 天然气工业, 2019, 39(7): 63-72.
LI Xiangfang, LIU Wenyuan, LIU Shujie, et al. A prevention and control method for natural gas hydrate in pipe strings during deepwater gas well production tests[J]. Natural Gas Industry, 2019, 39(7): 63-72.
[16] REYNA E, STEWART S. Case history of the removal of a hydrate plug formed during deep water well testing[R]. SPE 67746-MS, 2001.
[17] FREITAS A, GASPARI E, CARVALHO P, et al. Formation and removal of a hydrate plug formed in the annulus between coiled tubing and drill string[R]. SPE 17229-MS, 2005.
[18] DE ASSIS J V, MOHALLEM R, TRUMMER S A, et al. Hydrate remediation during well testing operations in the deepwater Campos Basin, Brazil[R]. SPE 163881-MS, 2013.
[19] ARRIETA V V, TORRALBA A O, HERNANDEZ P C, et al. Case history: Lessons learned from retrieval of coiled tubing stuck by massive hydrate plug when well testing in an ultradeepwater gas well in Mexico[J]. SPE Production & Operations, 2011, 26(4): 337-342.
[20] YU T, GUANG G, ABUDULA A. Production performance and numerical investigation of the 2017 offshore methane hydrate production test in the Nankai Trough of Japan[J]. Applied Energy, 2019, 251: 113338.
[21] CREEK J L. Efficient hydrate plug prevention[J]. Energy Fuels, 2012, 26(7): 4112-4116.
[22] 赵欣, 邱正松, 黄维安, 等. 天然气水合物热力学抑制剂作用机制及优化设计[J]. 石油学报, 2015, 36(6): 124-130.
ZHAO Xin, QIU Zhengsong, HUANG Weian, et al. Inhibition mechanism and optimized design of thermodynamic gas hydrate inhibitors[J]. Acta Petrolei Sinica, 2015, 36(6): 124-130.
[23] ZHAO X, QIU Z, ZHANG Z, et al. Relationship between the gas hydrate suppression temperature and water activity in the presence of thermodynamic hydrate inhibitor[J]. Fuel, 2020, 264: 116776.
[24] 徐加放, 邱正松, 何畅. 深水钻井液中水合物抑制剂的优化[J]. 石油学报, 2011, 32(1): 149-152.
XU Jiafang, QIU Zhengsong, HE Chang. The inhibitor optimization of gas hydrates in deepwater drilling fluids[J]. Acta Petrolei Sinica, 2011, 32(1): 149-152.
[25] 霍洪俊, 任韶然, 王瑞和, 等. 气体水合物动力学和热力学抑制剂复合作用试验[J]. 中国石油大学学报(自然科学版), 2012, 36(5): 116-119.
HUO Hongjun, REN Shaoran, WANG Ruihe, et al. Experiment on synergetic effects of kinetic and thermodynamic hydrate inhibitors[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(5): 116-119.
[26] 孙慧翠, 王韧, 王建华, 等. 不同分子量聚乙烯吡咯烷酮对四氢呋喃水合物形成及生长的影响[J]. 天然气工业, 2018, 38(5): 125-132.
SUN Huicui, WANG Ren, WANG Jianhua, et al. Effects of polyvinylpyrrolidone with different molecular weights on the formation and growth of tetrahydrofuran hydrate[J]. Natural Gas Industry, 2018, 38(5): 125-132.
[27] 徐勇军, 杨晓西, 丁静, 等. 气体水合物防聚剂研究[J]. 天然气工业, 2004, 24(12): 135-138.
XU Yongjun, YANG Xiaoxi, DING Jing, et al. Study on anti- agglomerates of gas hydrate[J]. Natural Gas Industry, 2004, 24(12): 135-138.
[28] LINGELEM M N, MAJEED A I, STANGE E. Industrial experience in evaluation of hydrate formation, inhibition, and dissociation in pipeline design and operation[J]. Annals of the New York Academy of Sciences, 1994, 715(1): 75-93.
[29] DI LORENZO M, AMAN Z M, KOZIELSKI K, et al. Underinhibited hydrate formation and transport investigated using a single-pass gas-dominant flowloop[J]. Energy Fuels, 2014, 28: 7274-7284.
[30] DING Lin, SHI Bohui, LYU Xiaofang, et al. Investigation of natural gas hydrate slurry flow properties and flow patterns using a high pressure flow loop[J]. Chemical Engineering Science, 2016, 146: 199-206.
[31] SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Investigation of hydrate plugging in natural gas+ diesel oil+ water systems using a high-pressure flow loop[J]. Chemical Engineering Science, 2017, 158: 480-489.
[32] 刘文远, 胡瑾秋, 李相方, 等. 深水气井测试返排阶段水合物生成及防治研究[J]. 中国海上油气, 2019, 31(2): 136-147.
LIU Wenyuan, HU Jinqiu, LI Xiangfang, et al. Study on the formation and prevention of hydrate in the backflow stage of deep water gas well test[J]. China Offshore Oil and Gas, 2019, 31(2): 136-147.
[33] WANG Zhiyuan, ZHANG Jianbo, SUN Baojiang, et al. A new hydrate deposition prediction model for gas-dominated systems with free water[J]. Chemical Engineering Science, 2017, 163: 145-154.
[34] WANG Zhiyuan, ZHAO Yang, ZHANG Jianbo, et al. Quantitatively assessing hydrate-blockage development during deep-water-gas-well testing[J]. SPE Journal, 2018, 23(4): 1166-1183.
[35] WANG Zhiyuan, YU Jing, ZHANG Jianbo, et al. Improved thermal model considering hydrate formation and deposition in gas-dominated systems with free water[J]. Fuel, 2019, 236: 870-879.
[36] SONG Shangfei, SHI Bohui, YU Weichao, et al. Study on the optimization of hydrate management strategies in deepwater gas well testing operations[J]. Journal of Energy Resources Technology, 2020, 142(3): 033002.
[37] WANG Zhiyuan, SUN Xiaohui, WANG Xuerui, et al. Prediction of natural gas hydrate formation region in wellbore during deep water gas well testing[J]. Journal of Hydrodynamics, 2014, 26(4): 568-576.
[38] ZHANG Jianbo, WANG Zhiyuan, SUN Baojiang, et al. An integrated prediction model of hydrate blockage formation in deep-water gas wells[J]. International Journal of Heat and Mass Transfer, 2019, 140: 187-202.
[39] 张振楠, 孙宝江, 王志远, 等. 产液气井泡沫排液起泡能力分析[J]. 石油学报, 2019, 40(1): 112-118.
ZHANG Zhennan, SUN Baojiang, WANG Zhiyuan, et al. The foamability analysis of foam drainage in liquid-producing gas wells[J]. Acta Petrolei Sinica, 2019, 40(1): 112-118.
[40] ZHANG Jianbo, WANG Zhiyuan, DUAN Wenguang, et al. Real-time estimation and management of hydrate plugging risk during deepwater gas well testing[R]. SPE 197151-MS, 2020.
[41] GOEL N, WIGGINS M, SHAH S. Analytical modeling of gas recovery from in situ hydrates dissociation[J]. Journal of Petroleum Science and Engineering, 2001, 29(2): 115-127.
[42] DI LORENZO M, AMAN Z M, KOZIELSKI K, et al. Modelling hydrate deposition and sloughing in gas-dominant pipelines[J]. The Journal of Chemical Thermodynamics, 2018, 117: 81-90.
文章导航

/