[1] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136.
JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136.
[2] 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1): 1-10.
JIN Zhijun, HU Zongquan, GAO Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10.
[3] 马永生, 冯建辉, 牟泽辉, 等. 中国石化非常规油气资源潜力及勘探进展[J]. 中国工程科学, 2012, 14(6): 22-30.
MA Yongsheng, FENG Jianhui, MOU Zehui, et al. The potential and exploring progress of unconventional hydrocarbon resources in SINOPEC[J]. Engineering Sciences, 2012, 14(6): 22-30.
[4] 刘振武, 撒利明, 杨晓, 等. 页岩气勘探开发对地球物理技术的需求[J]. 石油地球物理勘探, 2011, 46(5): 810-818.
LIU Zhenwu, SA Liming, YANG Xiao, et al. Needs of geophysical technologies for shale gas exploration[J]. Oil Geophysical Prospecting, 2011, 46(5): 810-818.
[5] VERNIK L, NUR A. Ultrasonic and anisotropy of hydrocarbon source rocks[J]. Geophysics, 1992, 57(5): 727-735.
[6] SONDERGELD C H, RAI C S, MARGESSON R W, et al. Ultrasonic measurement of anisotropy on the Kimmeridge Shale[R]. Calgary: 70th Annual International Meeting, Society of Exploration Geophysicists, 2000.
[7] SONDERGELD C H, RAI C S. Elastic anisotropy of shales[J]. The Leading Edge, 2011, 30(3): 324-331.
[8] DEWHURST D N, SIGGINS A F, SAROUT J, et al. Geomechanical and ultrasonic characterization of a Norwegian sea shale[J]. Geophysics, 2011, 76(6): WA101-WA111.
[9] 邓继新, 王欢, 周浩, 等. 龙马溪组页岩微观结构、地震岩石物理特征与建模[J]. 地球物理学报, 2015, 58(6): 2123-2136.
DENG Jixin, WANG Huan, ZHOU Hao, et al. Microtexture, seismic rock physical properties and modeling of Longmaxi Formation shale[J]. Chinese Journal of Geophysics, 2015, 58(6): 2123-2136.
[10] 邓继新, 唐郑元, 李越, 等. 成岩过程对五峰-龙马溪组页岩地震岩石物理特征的影响[J]. 地球物理学报, 2018, 61(2): 659-672.
DENG Jixin, TANG Zhengyuan, LI Yue, et al. The influence of the diagenetic process on seismic[J]. Chinese Journal of Geophysics, 2018, 61(2): 659-672.
[11] HORNBY B E, SCHWARTZ L M, HUDSON J A. Anisotropic effective-medium modeling of the elastic properties of shales[J]. Geophysics, 1994, 59(10): 1570-1583.
[12] VERNIK L, MILOVAC J. Rock physics of organic shales[J]. The Leading Edge, 2011, 30(3): 324-331.
[13] CARCIONE JOSÉ M, AVSETH P. Rock-physics templates for clay-rich source rocks[J]. Geophysics, 2015, 80(5): D481-D500.
[14] GUO Z Q, LI X Y, LIU C, et al. A shale rock physics model for analysis of brittleness index, mineralogy and porosity in the Barnett Shale[J]. Journal of Geophysics and Engineering, 2013, 10(1): 1-10.
[15] ZHANG F, LI X Y, QIAN Z. Estimation of anisotropy parameters for shale based on an improved rock physics model[J]. Journal of Geophysics and Engineering, 2017, 14(2): 143-158.
[16] HICKEY J J, BO H. Lithofacies summary of the Mississippian Barnett Shale, Mitchell 2 T. P. Sims well, Wise County, Texas[J]. AAPG Bulletin, 2007, 91(4): 437-443.
[17] ABOUELRESH M O, SLATT R M. Lithofacies and sequence stratigraphy of the Barnett Shale in east-central Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96(1): 1-12.
[18] WEDEPOHL K H. Environmental influences on the chemical composition of shales and clays[J]. Physics and Chemistry of the Earth, 1971, 8(2): 307-331.
[19] YAMAMOTO K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes[J]. Sedimentary Geology, 1987, 52(1): 65-108.
[20] ROWE H D, LOUCKS R G, RUPPEL S C, et al. Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk geochemical inferences and Mo-TOC constraints on the severity of hydrographic restriction[J]. Chemical Geology, 2008, 257(1/2): 16-25.
[21] ROSS D J, BUSTIN R M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian- Mississippian shales, Western Canadian Sedimentary Basin[J]. Chemical Geology, 2009, 260(1/2): 1-19.
[22] AVSETH P, MUKERJI T, MAVKO G, et al. Rock-physics diagnostics of depositional texture, diagenetic alterations, and reservoir heterogeneity in high porosity siliciclastic sediments and rocks: A review of selected models and suggested work flows[J]. Geophysics, 2010, 75(5): 31-47.
[23] MAVKO G, MUKERJI T, DVORKIN J. The rock physics handbook second edition[M]. Cambridge: Cambridge University Press, 2009.
[24] LI Q H, CHEN M, JIN Y, et al. Indoor evaluation method for shale brittleness and improvement[J]. Chinese Journal of Rock Mechanics and Engineering (in Chinese), 2012, 31(8): 1680-1686.
[25] RICKMAN R, MULLEN M, ERIK PETREL E, et al. A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett shale[R]. SPE 115258, 2008.
[26] WANG F P, GALE J F W. Screening criteria for shale-gas systems[J]. Transactions of the Gulf Coast Association of Geological Societies, 2009, 59: 779-793.
[27] PRASAD M, MBA K, MCEVOY T E. Maturity and impedance analysis of organic-rich shales[J]. SPE Reservoir Evaluation and Engineering, 2011, 14(5): 533-543.
[28] ELIYAHU M. Mechanical properties of organic matter in shales mapped at the nanometer scale[J]. Marine and Petroleum Geology, 2015, 59: 294-304.
[29] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.