油气勘探

四川盆地南部地区龙马溪组深层页岩岩石物理特征

  • 徐中华 ,
  • 郑马嘉 ,
  • 刘忠华 ,
  • 邓继新 ,
  • 李熙喆 ,
  • 郭伟 ,
  • 李晶 ,
  • 王楠 ,
  • 张晓伟 ,
  • 郭晓龙
展开
  • 1.成都理工大学油气藏地质及开发工程国家重点实验室,成都 610059;
    2.成都理工大学地球物理学院,成都 610059;
    3.中国石油勘探开发研究院西北分院,兰州 730020;
    4.西南石油大学地球科学与技术学院,成都 610500;
    5.中国石油勘探开发研究院测井技术研究所,北京 100083;
    6.中国石油勘探开发研究院四川盆地研究中心,北京 100083
徐中华(1987-),男,山东菏泽人,中国石油勘探开发研究院西北分院工程师,现为成都理工大学在读博士研究生,主要从事岩石物理及地震物理模拟实验研究。地址:甘肃省兰州市城关区雁儿弯路535号,中国石油勘探开发研究院西北分院,邮政编码:730020。E-mail:xuzh08@petrochina.com.cn

收稿日期: 2019-08-07

  修回日期: 2020-11-05

  网络出版日期: 2020-11-27

基金资助

国家自然科学基金项目(41774136); 国家科技重大专项(2017ZX05035004)

Petrophysical properties of deep Longmaxi Formation shales in the southern Sichuan Basin, SW China

  • XU Zhonghua ,
  • ZHENG Majia ,
  • LIU Zhonghua ,
  • DENG Jixin ,
  • LI Xizhe ,
  • GUO Wei ,
  • LI Jing ,
  • WANG Nan ,
  • ZHANG Xiaowei ,
  • GUO Xiaolong
Expand
  • 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China;
    2. College of Geophysics, Chengdu University of Technology, Chengdu 610059, China;
    3. Northwest Branch of PetroChina Research Institute of Petroleum Exploration & Development, Lanzhou 730020, China;
    4. School of Geosciences and Technology, Southwest Petroleum University, Chengdu 610500, China;
    5. Research Institute of Well Logging and Remote Sensing, PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
    6. Sichuan Basin Research Center, PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China

Received date: 2019-08-07

  Revised date: 2020-11-05

  Online published: 2020-11-27

摘要

四川盆地南部地区下志留统龙马溪组深层页岩是目前中国页岩气勘探的主要接替层位。由于对其岩石物理规律缺乏系统实验研究,致使深层页岩“甜点”综合预测缺乏物理依据。在对研究区龙马溪组深层页岩样品系统岩石学、声学与硬度测量的基础上,讨论了深层页岩样品动、静态弹性性质变化规律与控制因素。研究结果表明,深层页岩样品在矿物组成与孔隙类型上与中浅层页岩具有相似性。TOC>2%的富有机质页岩样品地球化学特征表明,样品具有以微晶石英颗粒为岩石支撑骨架的特征,粒间孔隙位于刚性石英颗粒之间,在力学性质上具有硬孔隙特征。TOC<2%的相对贫有机质页岩样品中石英来源以陆源碎屑石英为主,岩石结构上表现为以塑性黏土矿物作为岩石支撑骨架的特征,粒间孔隙位于黏土颗粒之间,在力学性质上具有软孔隙特征。页岩样品在岩石结构上的差异造成速度随石英含量表现出不对称的倒“V”型变化形式,富有机质页岩样品具有较小的速度-孔隙度、速度-有机质含量变化率,两类储集层岩石在纵波阻抗-泊松比以及弹性模量-泊松比等组合弹性参数相关关系图中具有较好的分区性。以生物成因石英为主的样品具有较高的硬度及脆性,而以陆源碎屑石英为主的样品中石英含量的变化对样品硬度及脆性的影响较小。研究结果可为龙马溪组页岩气储集层的测井解释和地震“甜点”预测提供依据。图14参29

本文引用格式

徐中华 , 郑马嘉 , 刘忠华 , 邓继新 , 李熙喆 , 郭伟 , 李晶 , 王楠 , 张晓伟 , 郭晓龙 . 四川盆地南部地区龙马溪组深层页岩岩石物理特征[J]. 石油勘探与开发, 2020 , 47(6) : 1100 -1110 . DOI: 10.11698/PED.2020.06.04

Abstract

Deep shale layers in the Lower Silurian Longmaxi Formation, southern Sichuan Basin is the major replacement target of shale gas exploration in China. However, there is a lack of systematic experimental research on the physical properties of the deep shale, the prediction of “sweet-spots” in deep shale gas reservoirs lacks physical basis. Based on petrological, acoustic and hardness measurements, variation law and control factors of dynamic and static elastic properties of the deep shale samples are investigated. The study results show that the deep shale samples are similar to the middle-shallow shale in terms of mineral composition and pore type. Geochemical characteristics of organic-rich shale samples (TOC > 2%) indicate that these shale samples have a framework of microcrystalline quartz grains; the intergranular pores in these shale samples are between rigid quartz grains and have mechanical property of hard pore. The lean-organic shale samples (TOC < 2%), with quartz primarily coming from terrigenous debris, feature plastic clay mineral particles as the support frame in rock texture. Intergranular pores in these samples are between clay particles, and show features of soft pores in mechanical property. The difference in microtexture of the deep shale samples results in an asymmetrical inverted V-type change in velocity with quartz content, and the organic-rich shale samples have a smaller variation rate in velocity-porosity and velocity-organic matter content. Also due to the difference in microtexture, the organic-rich shale and organic-lean shale can be clearly discriminated in the cross plots of P-wave impedance versus Poisson's ratio and elasticity modulus versus Poisson's ratio. The shale samples with quartz mainly coming from biogenic silica show higher hardness and brittleness, while the shale samples with quartz mainly from terrigenous debris have hardness and brittleness less affected by quartz content. The study results can provide a basis for well-logging interpretation and “sweet spot” prediction of Longmaxi Formation shale gas reservoirs.

参考文献

[1] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136.
JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136.
[2] 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1): 1-10.
JIN Zhijun, HU Zongquan, GAO Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10.
[3] 马永生, 冯建辉, 牟泽辉, 等. 中国石化非常规油气资源潜力及勘探进展[J]. 中国工程科学, 2012, 14(6): 22-30.
MA Yongsheng, FENG Jianhui, MOU Zehui, et al. The potential and exploring progress of unconventional hydrocarbon resources in SINOPEC[J]. Engineering Sciences, 2012, 14(6): 22-30.
[4] 刘振武, 撒利明, 杨晓, 等. 页岩气勘探开发对地球物理技术的需求[J]. 石油地球物理勘探, 2011, 46(5): 810-818.
LIU Zhenwu, SA Liming, YANG Xiao, et al. Needs of geophysical technologies for shale gas exploration[J]. Oil Geophysical Prospecting, 2011, 46(5): 810-818.
[5] VERNIK L, NUR A. Ultrasonic and anisotropy of hydrocarbon source rocks[J]. Geophysics, 1992, 57(5): 727-735.
[6] SONDERGELD C H, RAI C S, MARGESSON R W, et al. Ultrasonic measurement of anisotropy on the Kimmeridge Shale[R]. Calgary: 70th Annual International Meeting, Society of Exploration Geophysicists, 2000.
[7] SONDERGELD C H, RAI C S. Elastic anisotropy of shales[J]. The Leading Edge, 2011, 30(3): 324-331.
[8] DEWHURST D N, SIGGINS A F, SAROUT J, et al. Geomechanical and ultrasonic characterization of a Norwegian sea shale[J]. Geophysics, 2011, 76(6): WA101-WA111.
[9] 邓继新, 王欢, 周浩, 等. 龙马溪组页岩微观结构、地震岩石物理特征与建模[J]. 地球物理学报, 2015, 58(6): 2123-2136.
DENG Jixin, WANG Huan, ZHOU Hao, et al. Microtexture, seismic rock physical properties and modeling of Longmaxi Formation shale[J]. Chinese Journal of Geophysics, 2015, 58(6): 2123-2136.
[10] 邓继新, 唐郑元, 李越, 等. 成岩过程对五峰-龙马溪组页岩地震岩石物理特征的影响[J]. 地球物理学报, 2018, 61(2): 659-672.
DENG Jixin, TANG Zhengyuan, LI Yue, et al. The influence of the diagenetic process on seismic[J]. Chinese Journal of Geophysics, 2018, 61(2): 659-672.
[11] HORNBY B E, SCHWARTZ L M, HUDSON J A. Anisotropic effective-medium modeling of the elastic properties of shales[J]. Geophysics, 1994, 59(10): 1570-1583.
[12] VERNIK L, MILOVAC J. Rock physics of organic shales[J]. The Leading Edge, 2011, 30(3): 324-331.
[13] CARCIONE JOSÉ M, AVSETH P. Rock-physics templates for clay-rich source rocks[J]. Geophysics, 2015, 80(5): D481-D500.
[14] GUO Z Q, LI X Y, LIU C, et al. A shale rock physics model for analysis of brittleness index, mineralogy and porosity in the Barnett Shale[J]. Journal of Geophysics and Engineering, 2013, 10(1): 1-10.
[15] ZHANG F, LI X Y, QIAN Z. Estimation of anisotropy parameters for shale based on an improved rock physics model[J]. Journal of Geophysics and Engineering, 2017, 14(2): 143-158.
[16] HICKEY J J, BO H. Lithofacies summary of the Mississippian Barnett Shale, Mitchell 2 T. P. Sims well, Wise County, Texas[J]. AAPG Bulletin, 2007, 91(4): 437-443.
[17] ABOUELRESH M O, SLATT R M. Lithofacies and sequence stratigraphy of the Barnett Shale in east-central Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96(1): 1-12.
[18] WEDEPOHL K H. Environmental influences on the chemical composition of shales and clays[J]. Physics and Chemistry of the Earth, 1971, 8(2): 307-331.
[19] YAMAMOTO K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes[J]. Sedimentary Geology, 1987, 52(1): 65-108.
[20] ROWE H D, LOUCKS R G, RUPPEL S C, et al. Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk geochemical inferences and Mo-TOC constraints on the severity of hydrographic restriction[J]. Chemical Geology, 2008, 257(1/2): 16-25.
[21] ROSS D J, BUSTIN R M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian- Mississippian shales, Western Canadian Sedimentary Basin[J]. Chemical Geology, 2009, 260(1/2): 1-19.
[22] AVSETH P, MUKERJI T, MAVKO G, et al. Rock-physics diagnostics of depositional texture, diagenetic alterations, and reservoir heterogeneity in high porosity siliciclastic sediments and rocks: A review of selected models and suggested work flows[J]. Geophysics, 2010, 75(5): 31-47.
[23] MAVKO G, MUKERJI T, DVORKIN J. The rock physics handbook second edition[M]. Cambridge: Cambridge University Press, 2009.
[24] LI Q H, CHEN M, JIN Y, et al. Indoor evaluation method for shale brittleness and improvement[J]. Chinese Journal of Rock Mechanics and Engineering (in Chinese), 2012, 31(8): 1680-1686.
[25] RICKMAN R, MULLEN M, ERIK PETREL E, et al. A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett shale[R]. SPE 115258, 2008.
[26] WANG F P, GALE J F W. Screening criteria for shale-gas systems[J]. Transactions of the Gulf Coast Association of Geological Societies, 2009, 59: 779-793.
[27] PRASAD M, MBA K, MCEVOY T E. Maturity and impedance analysis of organic-rich shales[J]. SPE Reservoir Evaluation and Engineering, 2011, 14(5): 533-543.
[28] ELIYAHU M. Mechanical properties of organic matter in shales mapped at the nanometer scale[J]. Marine and Petroleum Geology, 2015, 59: 294-304.
[29] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.
文章导航

/