[1] 黄广庆. 特高含水期产量递减分析及递减率表征公式[J]. 科学技术与工程, 2019, 19(15): 99-104.
HUANG Guangqing.Production decline analysis and characterization formula of decline rate at the ultra-high water cut stage[J]. Science Technology and Engineering, 2019, 19(15): 99-104.
[2] 王继强, 石成方, 纪淑红, 等. 特高含水期新型水驱特征曲线[J]. 石油勘探与开发, 2017, 44(6): 955-960.
WANG Jiqiang, SHI Chengfang, JI Shuhong, et al.New water drive characteristic curves at ultra-high water cut stage[J]. Petroleum Exploration and Development, 2017, 44(6): 955-960.
[3] 陈元千, 陶自强. 高含水期水驱曲线的推导及上翘问题的分析[J].断块油气田, 1997, 4(3): 19-24.
CHEN Yuanqian, TAO Ziqiang.Derivation of water drive curve at high water-cut stage and its analysis of upwarding problem[J]. Fault-Block Oil & Gas Field, 1997, 4(3): 19-24.
[4] 刘晓华, 邹春梅, 姜艳东, 等. 现代产量递减分析基本原理与应用[J]. 天然气工业, 2010, 30(5): 50-54.
LIU Xiaohua, ZOU Chunmei, JIANG Yandong, et al.Basic principle and application of modern production decline analysis[J]. Natural Gas Industry, 2010, 30(5): 50-54.
[5] 张倩倩. 产量递减分析方法简评[J]. 油气地球物理, 2013, 11(3): 41-44.
ZHANG Qianqian.A brief review of production decline analysis methods[J]. Oil and Gas Geophysics, 2013, 11(3): 41-44.
[6] CRNKOVIC-FRIIS L, ERLANDSON M.Geology driven EUR prediction using deep learning[R]. SPE 174799-MS, 2015.
[7] GU M, GOKARAJU D, CHEN D, et al.Shale fracturing characterization and optimization by using anisotropic acoustic interpretation, 3D fracture modeling, and supervised machine learning[J]. Petrophysics, 2016, 57(6): 573-587.
[8] SIDAHMED M, ROY A, SAYED A.Streamline rock facies classification with deep learning cognitive process[R]. SPE 187436-MS, 2017.
[9] WU P, JAIN V, KULKARNI M S, et al.Machine learning-based method for automated well-log processing and interpretation[M]//ALUMBAUGH D, BEVC D. SEG technical program expanded abstracts 2018. Tulsa: Society of Exploration Geophysicists, 2018: 2041-2045.
[10] NOSHI C I, ASSEM A I, SCHUBERT J J.The role of big data analytics in exploration and production: A review of benefits and applications[R]. SPE 193776-MS, 2018.
[11] PHAM N, FOMEL S, DUNLAP D.Automatic channel detection using deep learning[M]//ALUMBAUGH D, BEVC D. SEG technical program expanded abstracts 2018. Tulsa: Society of Exploration Geophysicists, 2018: 2026-2030.
[12] LI W.Classifying geological structure elements from seismic images using deep learning[M]//ALUMBAUGH D, BEVC D. SEG technical program expanded abstracts 2018. Tulsa: Society of Exploration Geophysicists, 2018: 4643-4648.
[13] MEHTA A.Tapping the value from big data analytics[J]. Journal of Petroleum Technology, 2016, 68(12): 40-41.
[14] HALL B.Facies classification using machine learning[J]. The Leading Edge, 2016, 35(10): 906-909.
[15] CARPENTER C.Geology-driven estimated-ultimate-recovery prediction with deep learning[J]. Journal of Petroleum Technology, 2016, 68(5): 74-75.
[16] MA S M.Technology focus: Formation evaluation (August 2018)[J]. Journal of Petroleum Technology, 2018, 70(8): 50.
[17] SAPUTELLI L.Technology focus: Petroleum data analytics[J]. Journal of Petroleum Technology, 2016, 68(10): 66.
[18] LI H, MISRA S.Long short-term memory and variational autoencoder with convolutional neural networks for generating NMR T2 distributions[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 16(2): 192-195.
[19] JOBE T D, VITAL-BRAZIL E, KHAIF M.Geological feature prediction using image-based machine learning[J]. Petrophysics, 2018, 59(6): 750-760.
[20] SILVA A A, LIMA NETO I A, MISSÁGIA R M, et al.Artificial neural networks to support petrographic classification of carbonate-siliciclastic rocks using well logs and textural information[J]. Journal of Applied Geophysics, 2015, 117: 118-125.
[21] 柴艳军. 基于灰色关联法的页岩气水平井产量主控因素分析[J]. 重庆科技学院学报(自然科学版), 2018, 20(2): 32-34.
CHAI Yanjun.Analysis of main controlling factors of shale gas horizontal well production based on grey correlation method[J]. Journal of Chongqing University of Science and Technology (Natural Science Edition), 2018, 20(2): 32-34.
[22] 王忠东, 王业博, 董红, 等. 页岩气水平井产量主控因素分析及产能预测[J]. 测井技术, 2017, 41(5): 577-582.
WANG Zhongdong, WANG Yebo, DONG Hong, et al.Analysis of production control factors and productivity prediction of horizontal wells in shale gas[J]. Journal of Well Logging Technology, 2017, 41(5): 577-582.
[23] 李亚林. 基于机器学习方法研究煤层气单井产量主控因素及产量预测[D]. 北京: 中国石油大学(北京), 2017.
LI Yalin.Study on main control factors and production prediction of single well production of coalbed methane based on machine learning[D]. Beijing: China University of Petroleum (Beijing), 2017.
[24] 李春生, 谭民浠, 张可佳. 基于改进型BP神经网络的油井产量预测研究[J]. 科学技术与工程, 2011, 11(31): 7766-7769.
LI Chunsheng, TAN Minxi, ZHANG Kejia.Oil well production prediction based on improved BP neural network[J]. Science and Technology and Engineering, 2011, 11(31): 7766-7769.
[25] 田亚鹏, 鞠斌山. 基于遗传算法改进BP神经网络的页岩气产量递减预测模型[J]. 中国科技论文, 2016, 11(15): 1710-1715.
TIAN Yapeng, JU Binshan.Shale gas production decline prediction model based on improved BP neural network based on genetic algorithm[J]. Chinese Science and Technology Paper, 2016, 11(15): 1710-1715.
[26] 马林茂, 李德富, 郭海湘, 等. 基于遗传算法优化BP神经网络在原油产量预测中的应用: 以大庆油田BED试验区为例[J]. 数学的实践与认识, 2015, 45(24): 117-128.
MA Linmao, LI Defu, GUO Haixiang, et al.Application of BP neural network optimization based on genetic algorithm in crude oil production prediction: Take BED test area of Daqing Oilfield as an example[J]. Practice and Understanding of Mathematics, 2015, 45(24): 117-128.
[27] 樊灵, 赵孟孟, 殷川, 等. 基于BP神经网络的油田生产动态分析方法[J]. 断块油气田, 2013, 20(2): 204-206.
FAN Ling, ZHAO Mengmeng, YIN Chuan, et al.Dynamic analysis method of oil field production based on BP neural network[J]. Fault Block Oil and Gas Field, 2013, 20(2): 204-206.
[28] 杨婷婷. 基于人工神经网络的油田开发指标预测模型及算法研究[D]. 大庆: 东北石油大学, 2013.
YANG Tingting.Research on prediction model and algorithm of oilfield development index based on artificial neural network[D]. Daqing: Northeast Petroleum University, 2013.
[29] 谷建伟, 隋顾磊, 李志涛, 等. 基于ARIMA-Kalman滤波器数据挖掘模型的油井产量预测[J]. 深圳大学学报(理工版), 2018, 35(6): 575-581.
GU Jianwei, SUI Gulei, LI Zhitao, et al.Oil well production prediction based on ARIMA-Kalman filter data mining model[J]. Journal of Shenzhen University (Science and Technology Edition), 2018, 35(6): 575-581.
[30] 李达. 基于时间序列分析方法的油田产量预测与应用[D]. 兰州: 兰州理工大学, 2018.
LI Da.Oilfield production prediction and application based on time series analysis method[D]. Lanzhou: Lanzhou University of Technology, 2018.
[31] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[32] 谷建伟, 周梅, 李志涛, 等. 基于数据挖掘的长短期记忆网络模型油井产量预测方法[J]. 特种油气藏, 2019, 26(2): 77-81.
GU Jianwei, ZHOU Mei, LI Zhitao, et al.Prediction method of oil well production based on data mining based on long-term and short-term memory network model[J]. Special Oil and Gas Reservoirs, 2019, 26(2): 77-81.
[33] 侯春华. 基于长短期记忆神经网络的油田新井产油量预测方法[J]. 油气地质与采收率, 2019, 26(3): 105-110.
HOU Chunhua.Prediction method of oil production in new wells based on long and short term memory neural network[J]. Oil and Gas Geology and Recovery, 2019, 26(3): 105-110.
[34] MIKOLOV T, KARAFIÁT M, BURGET L, et al.Recurrent neural network based language model[R]. Makuhari, Chiba, Japan: 11th Annual Conference of the International Speech Communication Association, 2010.
[35] GRAVES A, JAITLY N. Towards end-to-end speech recognition with recurrent neural networks[C]//Proceedings of the 31st International Conference on Machine Learning. Washington D.C.: IEEE Computer Society Press, 2014: 1764-1772.
[36] SUTSKEVER I, VINYALS O, LE Q V.Sequence to sequence learning with neural networks[R]. Montreal, Canada: Advances in Neural Information Processing Systems 27 (NIPS 2014), 2014.
[37] 杨祎玥, 伏潜, 万定生. 基于深度循环神经网络的时间序列预测模型[J]. 计算机技术与发展, 2017, 27(3): 35-38.
YANG Yiyue, FU Qian, WAN Dingsheng.A prediction model for time series based on deep recurrent neural network[J]. Computer Technology and Development, 2017, 27(3): 35-38.
[38] 黄婷婷, 余磊. SDAE-LSTM模型在金融时间序列预测中的应用[J]. 计算机工程与应用, 2019, 55(1): 142-148.
HUANG Tingting, YU Lei.Application of SDAE-LSTM model in financial time series forecasting[J]. Computer Engineering and Application, 2019, 55(1): 142-148.
[39] DAS S, GILES C L, SUN G.Learning context-free grammars: Capabilities and limitations of a recurrent neural network with an external stack memory[C]//Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society. New York: Cognitive Science Society, 1992.
[40] GUYON I, WESTON J, BARNHILL S, et al.Gene selection for cancer classification using support vector machines[J]. Machine Learning, 2002, 46(1/2/3): 389-422.