针对目前油气田现场广泛采用的多相流分离检测技术存在的效率低、精度差、数据延迟等问题,研究基于磁共振技术的多相流在线检测方法,形成硬件装置,并开展室内实验及现场应用。提出“静止状态测相含率+流动状态测流速”的多相流磁共振流量测量方法;提出采用先计量油水比再计量含气率的方法实现油、气、水三相相含率的测量。在装置研制方面,提出可应用于流动流体测量的分段式磁体结构和双天线结构,研发了高集成磁共振谱仪系统及配套智能化软件。室内实验及现场应用表明,研制的多相流磁共振在线检测系统存在以下优势:只依靠磁共振技术同时完成流量和相含率检测;在线原位高频率检测,实时监测油井瞬态产液波动;能实现油、气、水三相全量程高精度检测,且不受矿化度、乳化状态影响;绿色、安全、低能耗。图16表4参34
邓峰
,
熊春明
,
陈诗雯
,
陈冠宏
,
王梦颖
,
刘化冰
,
张建军
,
雷群
,
曹刚
,
徐东平
,
陶冶
,
肖立志
. 油气多相流磁共振在线检测方法及装置[J]. 石油勘探与开发, 2020
, 47(4)
: 798
-808
.
DOI: 10.11698/PED.2020.04.17
Most multiphase flow separation detection methods used commonly in oilfields are low in efficiency and accuracy, and have data delay. An online multiphase flow detection method is proposed based on magnetic resonance technology, and its supporting device has been made and tested in lab and field. The detection technology works in two parts: measure phase holdup in static state and measure flow rate in flowing state. Oil-water ratio is first measured and then gas holdup. The device is composed of a segmented magnet structure and a dual antenna structure for measuring flowing fluid. A highly compact magnetic resonance spectrometer system and intelligent software are developed. Lab experiments and field application show that the online detection system has the following merits: it can measure flow rate and phase holdup only based on magnetic resonance technology; it can detect in-place transient fluid production at high frequency and thus monitor transient fluid production in real time; it can detect oil, gas and water in a full range at high precision, the detection isn’t affected by salinity and emulsification. It is a green, safe and energy-saving system.
[1] API. API recommended practice for measurement of multiphase flow: API RP 86-2005[S]. Washington: API Publishing Services, 2005.
[2] 赵永成. 油井多相不分离在线自动检测与计量方法研究[D]. 北京: 北京工业大学, 2014: 2-5.
ZHAO Yongcheng.On-line automatic measurement methods of multiphase flow of the well in no separation[D]. Beijing: Beijing University of Technology, 2014: 2-5.
[3] SHI Junfeng, DENG Feng, XIAO Lizhi, et al.A proposed NMR solution for multi-phase flow fluid detection[J]. Petroleum Science, 2019, 16(5): 1148-1158.
[4] ELSHAFEI M, AL-SUNNI F, EL-FERIK S. Multiphase flow measurement system and method: US9068873B2[P]. 2015-06-30.
[5] 兰州海默科技股份有限公司. 多相流的正电子断层成像装置及方法: CN102565844B[P].2016-02-10.
Lanzhou Haimo Technology Co. Ltd. Positron tomography device and method for multiphase flow: CN102565844B[P].2016-02-10.
[6] 高书香, 周星远, 单秀华, 等. 国内在线不分离式多相流量计技术现状[J]. 油气储运, 2019(6): 667-671.
GAO Shuxiang, ZHOU Xingyuan, SHAN Xiuhua, et al.The technical status of in-line multiphase flow meter in China[J]. Oil & Gas Storage and Transportation, 2019(6): 667-671.
[7] 苏欣, 袁宗明, 范小霞. 多相流量计的研究与应用[J]. 石油化工自动化, 2006(1): 93-98, 101.
SU Xin, YUAN Zongming, FAN Xiaoxia.Research and application of multiphase flowmeter[J]. Automation in Petrochemical Industry, 2006(1): 93-98, 101.
[8] 李轶. 多相流测量技术在海洋油气开采中的应用与前景[J]. 清华大学学报(自然科学版), 2014, 54(1): 90-98.
LI Yi.Application and perspective of multiphase flow metering technologies for ocean oil and gas exploitation[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(1): 90-98.
[9] THORN R, JOHANSEN G A, HJERTAKER B T.Three-phase flow measurement in the petroleum industry[J]. Measurement Science & Technology, 2013, 24(1): 012003.
[10] SIMURDA M, DUGGEN L, BASSE N T, et al.Fourier collocation approach with mesh refinement method for simulating transit-time ultrasonic flow meters under multiphase flow conditions[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65(2): 244-257.
[11] KARTUSHINSKY A, BALAKIN B V, KUTSENKO K V, et al.Numerical study of gas-liquid flow morphology in a vertical flowmeter nozzle[R]. Thessaloniki, Greece: International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2017), 2017.
[12] 潘艳芝, 王栋, 巩大利, 等. 一种计量稠油中油气水三相流的方法和装置研究[J]. 西安交通大学学报, 2016, 50(7): 140-144.
PAN Yanzhi, WANG Dong, GONG Dali, et al.Investigation on the oil-water-gas measurements in viscous oil[J]. Journal of Xi’an Jiaotong University, 2016, 50(7): 140-144.
[13] 韩云峰, 安维峥, 孙钦, 等. 水下多相流量计相分率参数测量技术研究[J]. 海洋工程装备与技术, 2019, 6(S1): 172-176.
HAN Yunfeng, AN Weizheng, SUN Qin, et al.An investigation of phase volume fraction measurement technology in multiphase flowmeter[J]. Ocean Engineer Equipment and Technology, 2019, 6(S1): 172-176.
[14] HUANG Songming. A stratified flow multiphase flowmeter: USPTO 20180348035[P].2018-12-06.
[15] MARUSINA M Y, BAZAROV B A, GALAIDIN P A, et al.A magnetic system based on permanent magnets for a flowmeter of multiphase fluid media[J]. Measurement Techniques, 2014, 57(4): 461-465.
[16] COATES G R, XIAO L Z, PRAMMER M G.NMR Logging: Principles and applications[M]. Texas: Gulf Professional Publishing, 2000.
[17] BLÜMICH B, CASANOVA F, APPELT S. NMR at low magnetic fields[J]. Chemical Physics Letters, 2009, 477(4/5/6): 231-240.
[18] DENG F, XIAO L Z, LIU H B, et al.Effects and correction for mobile NMR measurement[J]. Applied Magnetic Resonance, 2013, 44(9): 1053-1065.
[19] WU Baosong, XIAO Lizhi, LI Xin, et al.Sensor design and implementation for a downhole NMR fluid analysis laboratory[J]. Petroleum Science, 2012, 9(1): 38-45.
[20] AKKURT R.Effects of motion in pulsed NMR logging[D]. Colorado: Colorado School of Mines, 1990.
[21] SIGAL R F, MILLER D L, GALFORD J E, et al.A method for enhancing the vertical resolution of NMR logs[R]. SPE 63215-MS, 2000.
[22] BLOCH F.Nuclear induction[J]. Physical Review, 1946, 70(7/8): 460-474.
[23] KOCHIN N E, KIBEL I A, ROZE N V.Theoretical hydromechanics[J]. Physics Today, 2009, 19(3): 76-76.
[24] BINGHAM E C.Fluidity and plasticity[M]. New York: McGraw-Hill Book Co., 1922.
[25] CASSON N.A flow equation for pigment oil-suspensions of the printing ink type[M]//MILL C C. Rheology of disperse systems. London: Pergamon Press, 1959: 84.
[26] HERSCHEL W H, BULKLEY R.Measurement of consistency as applied to rubber-benzene solutions[R]. Atlantic City: 29th Annual Meeting of the American Society Testing Materials, 1926.
[27] MORESI G, MAGIN R.Miniature permanent magnet for table-top NMR[J]. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, 2003, 19B(1): 35-43.
[28] SMITH M R, HUGHES D G.On the signal-to-noise ratio of nuclear magnetic resonance oscillator spectrometers[J]. Journal of Physics E: Scientific Instruments, 2001, 4(10): 725-729.
[29] HOULT D I, RICHARDS R E.The signal-to-noise ratio of the nuclear magnetic resonance experiment[J]. Journal of Magnetic Resonance, 1976, 24(1): 71-85.
[30] CASANOVA F, PERLO J, BLÜMICH B. Single-sided NMR[M]. New York: Springer, 2011.
[31] SUN B Q, TAHERIAN R. Method for eliminating ringing during a nuclear magnetic resonance measurement: U.S. Patent 6121774[P].2000-09-19.
[32] VENKATARAMANAN L.Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions[J]. IEEE Transactions on Signal Processing, 2002, 50(5): 1017-1026.
[33] HALBACH K.Design of permanent multipole magnets with oriented rare earth cobalt material[J]. Nuclear Instruments & Methods, 1980, 169(1): 1-10.
[34] BLÜMLER P. Proposal for a permanent magnet system with a constant gradient mechanically adjustable in direction and strength[J]. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, 2016, 46(1): 41-48.