石油工程

基于真三轴实验研究超稠油储集层压裂裂缝扩展规律

  • 林伯韬 ,
  • 史璨 ,
  • 庄丽 ,
  • 游红娟 ,
  • 黄勇
展开
  • 1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249;
    2. 韩国建设技术研究院,高阳 10223,韩国;
    3. 中国石油新疆油田工程技术研究院,新疆克拉玛依 834000
林伯韬(1983-),男,福建武平人,博士,中国石油大学(北京)石油工程学院教授,主要从事储集层地质力学以及石油工程岩石力学等方面研究工作。地址:北京市昌平区府学路18号,中国石油大学(北京)石油工程学院,邮政编码:102249。E-mail:linbotao@vip.163.com

收稿日期: 2019-08-13

  网络出版日期: 2020-05-19

基金资助

国家自然科学基金“超稠油SAGD开采陆相含泥岩夹层油砂扩容机理及渗流评价研究”(51404281)

Study on fracture propagation behavior in ultra-heavy oil reservoirs based on true triaxial experiments

  • LIN Botao ,
  • SHI Can ,
  • ZHUANG Li ,
  • YOU Hongjuan ,
  • HUANG Yong
Expand
  • 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China;
    2. Korea Institute of Civil Engineering and Building Technology, Goyang 10223, Korea;
    3. Research Institute of Engineering Technology, PetroChina Xinjiang Oilfield Company, Karamay 834000, China

Received date: 2019-08-13

  Online published: 2020-05-19

摘要

针对新疆风城油田超稠油储集层蒸汽辅助重力泄油(SAGD)开采注汽量大、预热周期长、产量低、局部资源无法开采的问题,基于超稠油储集层及夹层的岩石力学和孔渗特征,考虑压裂液排量、黏度、射孔密度和起裂位置的影响,开展真三轴水力压裂与CT扫描实验,研究在储集层和夹层中压裂微裂缝和宏观裂缝的扩展规律。实验发现,在超稠油储集层中压裂仅造成微裂缝发育,且微裂缝无法突破夹层;在夹层中压裂,施工排量越高(大于0.6 m3/min),黏度越小,越易在夹层中形成宏观线性裂缝,且穿层至储集层中的裂缝延伸距离增加,增加射孔密度,可在储集层- 夹层互层中形成复杂的宏观线性裂缝网络。研究结果可为超稠油储集层压裂准确选层及夹层改造的施工参数优化提供指导。图12表4参34

本文引用格式

林伯韬 , 史璨 , 庄丽 , 游红娟 , 黄勇 . 基于真三轴实验研究超稠油储集层压裂裂缝扩展规律[J]. 石油勘探与开发, 2020 , 47(3) : 608 -616 . DOI: 10.11698/PED.2020.03.17

Abstract

As the ultra-heavy oil reservoirs developed by steam assisted gravity drainage (SAGD) in the Fengcheng oilfield, Xinjiang have problems such as huge steam usage, long preheating period, low production, and inaccessible reserve in local parts. Based on the rock mechanics and porosity/permeability characteristics of heavy oil reservoir and interlayer, a series of true triaxial experiments and CT tests considering the fracturing fluid injection rate, viscosity, perforation density and location of fracture initiation were conducted to disclose the propagation behavior of micro- and macro-fractures in the reservoirs and mudstone interlayers. These experiments show that fracturing in the heavy oil reservoirs only generates microfractures which can’t break the interlayer. In contrast, when fracturing in the interlayer, the higher the injection rate (greater than 0.6 m3/min), the lower the viscosity, the easier it is to form macro-fractures in the interlayers, and the further the fractures will propagate into the reservoirs. Also, increasing perforation density tends to create complex macro-fracture network in the interbedded reservoirs and mudstone interlayers. The findings of this study can provide scientific guidance for the selection of fracturing layer and the optimization of parameters in the interlayer fracturing of heavy oil reservoirs.

参考文献

[1] 刘文章. 稠油注蒸汽热采工程[M]. 北京: 石油工业出版社, 1999.
LIU Wenzhang.Steam injection thermal production in heavy oil reservoir[M]. Beijng: Petroleum Industry Press, 1999.
[2] 陈森, 窦升军, 游红娟, 等. 双水平井SAGD循环预热技术及现场应用[J]. 新疆石油天然气, 2012, 8(s1): 6-10.
CHEN Sen, DOU Shengjun, YOU Hongjuan, et al.Application of steam recycle preheating technology to bilateral horizontal well[J]. Xinjiang Oil and Gas, 2012, 8(s1): 6-10.
[3] 林伯韬, 陈森, 潘竟军, 等. 风城陆相超稠油油砂微压裂扩容机理实验研究[J]. 石油钻采工艺, 2016, 38(3): 359-364, 408.
LIN Botao, CHEN Sen, PAN Jingjun, et al.Experimental study on dilation mechanism of micro-fracturing in continental ultra-heavy oil sand reservoir, Fengcheng Oilfield[J]. Oil Drilling & Production Technology, 2016, 38(3): 359-364, 408.
[4] BUTLER R M.Steam assisted gravity drainage-concept, development, performance and future[J]. Journal of Canadian Petroleum Technology, 1994, 33(2): 44-50.
[5] CHALATURNYK R, SCOTT J.Geomechanical response of heavy oil reservoirs to the steam assisted gravity drainage process[R]. SPE 37569, 1997.
[6] 周游, 鹿腾, 武守亚, 等. 双水平井蒸汽辅助重力泄油蒸汽腔扩展速度计算模型及其应用[J]. 石油勘探与开发, 2019, 46(2): 334-341.
ZHOU You, LU Teng, WU Shouya, et al.Models of steam-assisted gravity drainage (SAGD) steam chamber expanding velocity in double horizontal wells and its application[J]. Petroleum Exploration and Development, 2019, 46(2): 334-341.
[7] LIN B, JIN Y, CHEN S.A criterion for evaluating the efficiency of water injection in oil sand reservoirs[J]. Journal of Petroleum Science and Engineering, 2017, 149: 322-330.
[8] LIN B, CHEN S, JIN Y, et al.Evaluating constitutive models for simulation of water injection in land facies Karamay oil sand reservoirs[C]//The 50th U.S. Rock Mechanics/Geomechanics Symposium. Houston, USA: American Rock Mechanics Association, 2016.
[9] XU B.Consideration of geomechanics for in-situ bitumen recovery in Xinjiang, China[R]. SPE 165414, 2013.
[10] 林伯韬, 金衍, 陈森, 等. SAGD井挤液预处理储集层扩容效果预测[J]. 石油钻采工艺, 2018, 40(3): 341-347.
LIN Botao, JIN Yan, CHEN Sen, et al.Prediction on the reservoir dilatation results by squeeze preprocessing in SAGD wells[J]. Oil Drilling & Production Technology, 2018, 40(3): 341-347.
[11] YUAN Y, YANG B, XU B, et al.Fracturing in the oil sand reservoirs[R]. SPE 149308, 2011.
[12] YUAN Y, XU B, YANG B, et al.Geomechanics for the thermal stimulation of heavy oil reservoirs: Canadian experience[R]. SPE 150293, 2011.
[13] BOHLOLI B, de PATER C J. Experimental study on hydraulic fracturing of soft rocks: Influence of fluid rheology and confining stress[J]. Journal of Petroleum Science and Engineering, 2006, 53(1/2): 1-12.
[14] de PATER C J, DONG Y. Experimental study of hydraulic fracturing in sand as a function of stress and fluid rheology[R]. SPE 105620, 2007.
[15] DONG Y, de PATER C J. Closure of hydraulic fractures visualized by X-Ray CT technique in sand[C]//The 1st Canada-U.S. Rock Mechanics Symposium. Vancouver, Canada: American Rock Mechanics Association, 2007.
[16] DONG Y, de PATER C J. Observation and modeling of the hydraulic fracture tip in sand[C]//The 42th U.S. Rock Mechanics Symposium. San Francisco, USA: American Rock Mechanics Association, 2008.
[17] ZHOU J, DONG Y F, de PATER C J, et al. Experimental study of the impact of shear dilation and fracture behavior during polymer injection for heavy oil recovery in unconsolidated reservoirs[R]. SPE 137656, 2010.
[18] OMORI Y, JIN S, ITO T.Experimental study of hydraulic fracturing in unconsolidated sands using X-ray CT method[C]//The 47th U.S. Rock Mechanics/Geomechanics Symposium. San Francisco, USA: American Rock Mechanics Association, 2013.
[19] ITO T, NARITA H.Laboratory study for pore water effect on hydraulically-induced fracture behavior in unconsolidated sands[C]// The 48th U.S. Rock Mechanics/Geomechanics Symposium. Minneapolis, MN: American Rock Mechanics Association, 2014.
[20] GERMANOVICH L N, HURT R S, AYOUB J A, et al.Experimental study of hydraulic fracturing in unconsolidated materials[R]. SPE 151827, 2012.
[21] LIN B, CHEN S L, JIN Y.Evaluation of reservoir deformation induced by water injection in SAGD wells considering formation anisotropy, heterogeneity and thermal effect[J]. Journal of Petroleum Science and Engineering, 2017, 157: 767-779.
[22] SAEEDI M, SETTARI A T.SAGD operation in interbedded sands with application of horizontal multistage fracturing: Geomechanics and fracturing aspects[R]. SPE 180721, 2016.
[23] RENSHAW C E, POLLARD D D.An experimentally verified criterion for propagation across unbounded interfaces in brittle linear elastic materials[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1995, 32(3): 237-249.
[24] 林伯韬, 金衍. 新疆风城油田SAGD井挤液扩容效果影响因素评价[J]. 石油钻探技术, 2018, 46(6): 71-76.
LIN Botao, JIN Yan.Evaluation of the influencing factors of dilatancy effects by squeezing liquids in SAGD wells in the Fengcheng oilfield of Xinjiang oilfield[J]. Petroleum Drilling Techniques, 2018, 46(6): 71-76.
[25] le RAVALEC M, MORLOT C, MARMIER R, et al. Heterogeneity impact on SAGD process performance in mobile heavy oil reservoirs[J]. Oil & Gas Science and Technology, 2009, 64(4): 469-476.
[26] KHAJEH M M, CHALATURNYK R, BOISVERT J.Impact of heterogeneous geomechanical properties on coupled geomechanical-flow simulation of SAGD[R]. SPE 148338, 2011.
[27] 梁光跃, 刘尚奇, 陈和平, 等. 油砂蒸汽辅助重力泄油开发过程中面临的夹层问题[J]. 科学技术与工程, 2015, 15(4): 68-73.
LIANG Guangyue, LIU Shangqi, CHEN Heping, et al.Shale layers issues in oil sands SAGD process[J]. Science Technology and Engineering, 2015, 15(4): 68-73.
[28] LIN B, JIN Y, PANG H, et al.Experimental investigation on dilation mechanisms of land-facies Karamay oil sand reservoirs under water injection[J]. Rock Mechanics and Rock Engineering, 2016, 49(4): 1425-1439.
[29] ASTM International.Method for consolidated drained triaxial compression test for soils: ASTM-D7181[S]. US: American Society for Testing and Materials, 2011.
[30] 柳贡慧, 庞飞, 陈治喜. 水力压裂模拟实验中的相似准则[J]. 石油大学学报(自然科学版), 2000, 24(5): 45-48.
LIU Gonghui, PANG Fei, CHEN Zhixi.Similarity criterion in hydraulic fracturing simulation experiment[J]. Journal of the University of Petroleum, China (Edition of Natural Science), 2000, 24(5): 45-48.
[31] ZHUANG L, KIM K Y, JUNG S G, et al.Cyclic hydraulic fracturing of cubic granite samples under triaxial stress state with acoustic emission, injectivity and fracture measurements[C]//The 52th U.S. Rock Mechanics/Geomechanics Geomechanics Symposium. Seattle, USA: American Rock Mechanics Association, 2018.
[32] 刘乃震, 张兆鹏, 邹雨时, 等. 致密砂岩水平井多段压裂裂缝扩展规律[J]. 石油勘探与开发, 2018, 45(6): 1059-1068.
LIU Naizhen, ZHANG Zhaopeng, ZOU Yushi, et al.Propagation law of hydraulic fractures during multi-staged horizontal well fracturing in a tight reservoir[J]. Petroleum Exploration and Development, 2018, 45(6): 1059-1068.
[33] FRANQUET J A, ECONOMIDES M J.Effect of stress and stress path on Young’s modulus and Poisson ratio of unconsolidated rocks: A new idea for hydraulic fracturing[R]. SPE 54012, 1999.
[34] 袁文奎, 黄杰, 郭布民, 等. 泥质疏松砂岩裂缝起裂实验研究[J]. 内蒙古石油化工, 2018, 44(4): 107-111.
YUAN Wenkui, HUANG Jie, GUO Bumin, et al.Study on the crack experiment of argillaceous loose sandstone cracks[J]. Inner Mongolia Petrochemical Industry, 2018, 44(4): 107-111.
文章导航

/