石油工程

高产气井瞬时关井对油管内流体流动的影响

  • 张智 ,
  • 王嘉伟 ,
  • 李炎军 ,
  • 罗鸣 ,
  • 张超
展开
  • 1. 西南石油大学油气藏地质及开发工程国家重点实验室,成都 610500;
    2. 中海石油(中国)有限公司湛江分公司,广东湛江 524057
张智(1976-),男,四川南充人,西南石油大学石油与天然气工程学院教授,主要从事石油工程教学和科研工作。地址:四川省成都市新都区西南石油大学石油与天然气工程学院,邮政编码:610500。E-mail: wisezh@126.com

收稿日期: 2019-07-24

  网络出版日期: 2020-05-19

基金资助

高等学校学科创新引智计划(111计划)(D18016); 国家科技重大专项“深水钻井、测试关键技术研究”(2016ZX05026-002); 国家科技重大专项“海洋深水油气田开发工程技术”(2016ZX05028-001-006); 国家科技重大专项“高含硫气井完整性评价与安全管控技术”(2016ZX05017-003)

Effects of instantaneous shut-in of high production gas well on fluid flow in tubing

  • ZHANG Zhi ,
  • WANG Jiawei ,
  • LI Yanjun ,
  • LUO Ming ,
  • ZHANG Chao
Expand
  • 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Chengdu 610500, China;
    2. Zhanjiang Branch, CNOOC (China) Co., Ltd., Zhanjiang 524057, China

Received date: 2019-07-24

  Online published: 2020-05-19

摘要

针对经典瞬变流模型无法模拟气井水锤效应问题,基于水锤效应机理与多相流理论,建立了多相流气井瞬变流数学模型;通过将油管柱的造斜部分进行单独处理,采用特征线法进行数值求解,实现了气井瞬变流的模拟计算。研究结果表明:阀门关闭时开度系数越大,井口压力的峰值越大,波动压力的变化幅度越平缓,压力突变区越不明显,在保证不超过油管最大关井压力的前提下,使用较大的开度系数可减小压力波的冲击;截面持液率越大,压力波速越大,传播周期越短,波动压力的变化幅度越大,压力越大,实际生产中可通过调整生产参数得到合适的持液率,控制波动压力的大小和变化幅度,减小水锤压力的冲击;采气树阀门关闭所用时间增加,井口的最大波动压力值减小,峰值出现的时间也相应滞后,压力突变区逐渐消失,阀门关闭时间越短,压力波的传播速度越快。实例模拟计算证实气井瞬变流模型可以优化合理的阀门开度系数和关阀时间,减小水锤冲击对井口装置和油管造成的危害,保障井筒完整性。图10表1参23

本文引用格式

张智 , 王嘉伟 , 李炎军 , 罗鸣 , 张超 . 高产气井瞬时关井对油管内流体流动的影响[J]. 石油勘探与开发, 2020 , 47(3) : 600 -607 . DOI: 10.11698/PED.2020.03.16

Abstract

As the classical transient flow model cannot simulate the water hammer effect of gas well, a transient flow mathematical model of multiphase flow gas well is established based on the mechanism of water hammer effect and the theory of multiphase flow. With this model, the transient flow of gas well can be simulated by segmenting the curved part of tubing and calculating numerical solution with the method of characteristic curve. The results show that the higher the opening coefficient of the valve when closed, the larger the peak value of the wellhead pressure, the more gentle the pressure fluctuation, and the less obvious the pressure mutation area will be. On the premise of not exceeding the maximum shut-in pressure of the tubing, adopting large opening coefficient can reduce the impact of the pressure wave. The higher the cross-section liquid holdup, the greater the pressure wave speed, and the shorter the propagation period will be. The larger the liquid holdup, the larger the variation range of pressure, and the greater the pressure will be. In actual production, the production parameters can be adjusted to get the appropriate liquid holdup, control the magnitude and range of fluctuation pressure, and reduce the impact of water hammer effect. When the valve closing time increases, the maximum fluctuating pressure value of the wellhead decreases, the time of pressure peak delays, and the pressure mutation area gradually disappears. The shorter the valve closing time, the faster the pressure wave propagates. Case simulation proves that the transient flow model of gas well can optimize the reasonable valve opening coefficient and valve closing time, reduce the harm of water hammer impact on the wellhead device and tubing, and ensure the integrity of the wellbore.

参考文献

[1] ZHI Z, JING L, YUSHAN Z, et al.Finite service life evaluation method of production casing for sour-gas wells[J]. Journal of Petroleum Science and Engineering, 2018, 165: 171-180.
[2] ZHANG Z, ZHANG N, LIU Z, et al.Synergistic effects of corrosion time and stress on corrosion of casing steel in H2S/CO2 gas wells[J]. Materials and Corrosion, 2018, 69: 386-392.
[3] ZHI Z, LIYUN S, QINGSHENG Z, et al.Environmentally assisted cracking performance research on casing for sour gas wells[J]. Journal of Petroleum Science and Engineering, 2017, 158: 729-738.
[4] 张智, 何雨, 黄茜, 等. 含硫气井完整性风险等级预测研究[J]. 中国安全科学学报, 2017(10): 155-161.
ZHANG Zhi, HE Yu, HUANG Qian, et al.Research on prediction of integrity risk grade of sour gas well[J]. China Safety Science Journal, 2017(10): 155-161.
[5] 张智, 李炎军, 张超, 等. 高温含CO2气井的井筒完整性设计[J]. 天然气工业, 2013, 33(9): 79-86.
ZHANG Zhi, LI Yanjun, ZHANG Chao, et al.Wellbore integrity design of high-temperature gas wells containing CO2[J]. Natural Gas Industry, 2013, 33(9): 79-86.
[6] 李海洋, 张智, 张继武, 等. 高产气井产量变化对油管柱振动的影响[J]. 重庆科技学院学报(自然科学版), 2013, 15(6): 28-30, 34.
LI Haiyang, ZHANG Zhi, ZHANG Jiwu, et al.The impact of changes in the high-yield gas well production on tubing string vibration[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2013, 15(6): 28-30, 34.
[7] WANG Y, FAN H, ZHANG L P, et al.An analysis of axial tubing vibration in a high pressure gas well[J]. Petroleum Science and Technology, 2011, 29(7): 708-714.
[8] ZHANG Z, ZHENG Y, LI J, et al.Stress corrosion crack evaluation of super 13Cr tubing in high-temperature and high-pressure gas wells[J]. Engineering Failure Analysis, 2019, 95: 263-272.
[9] BLICK E F, SALEEM S.Key gas well blowout due to waterhammer phenomenon[R]. Dallas: SPE Annual Technical Conference and Exhibition, 1991.
[10] 李凌峰, 李克文, 熊钰, 等. 异常高压气井采气中井筒-地面一体化安全采输工艺技术研究[R]. 成都: 油气田开发技术大会, 2009.
LI Lingfeng, LI Kewen, XIONG Yu, et al.Research on safety production and transportation technology of wellbore - surface integration in abnormal high pressure gas well[R]. Chengdu: The Third Oil and Gas Field Development Technology Conference, 2009.
[11] FARZANEH-GORD M, RAHBARI H R.Unsteady natural gas flow within pipeline network, an analytical approach[J]. Journal of Natural Gas Science and Engineering, 2016, 28: 397-409.
[12] ZHI Z, ZEYU Z, YUFAN H, et al.Study of a model of wellhead growth in offshore oil and gas wells[J]. Journal of Petroleum Science and Engineering, 2017, 158: 144-151.
[13] JARDINE S I, JOHNSON A B, WHITE D B, et al.Hard or soft shut-in: Which is the best approach?[R]. Amsterdam: SPE/IADC Drilling Conference, 1993.
[14] ERIKA V, PAGAN, PAULO J.A simplified model to predict transient liquid loading in gas wells[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 372-381.
[15] JALAL F, OWAYED, TIAB D.Transient pressure behavior of Bingham non-Newtonian fluids for horizontal wells[J]. Journal of Petroleum Science and Engineering, 2008, 61(1): 21-32.
[16] 何世明, 安文华, 王书琪, 等. 高含硫钻井软关井水击压力的ADINA模型[J]. 天然气工业, 2008, 28(10): 52-54.
HE Shiming, AN Wenhua, WANG Shuqi, et al.The ADINA model for water hammer pressure produced upon soft shut-in of high sulfur wells[J]. Natural Gas Industry, 2008, 28(10): 52-54.
[17] 彭齐, 樊洪海, 刘劲歌, 等. 起下钻过程中井筒稳态波动压力计算方法[J]. 石油钻探技术, 2016, 44(4): 35-40.
PENG Qi, FAN Honghai, LIU Jinge, et al.Improved calculation of wellbore steady fluctuation pressure in tripping operations[J]. Petroleum Drilling Techniques, 2016, 44(4): 35-40.
[18] 陈林, 张雪, 刘顺茂, 等. 井筒气液两相流水击波速计算图版的研制与应用[J]. 西安石油大学学报(自然科学版), 2018, 33(1): 79-84.
CHEN Lin, ZHANG Xue, LIU Shunmao, et al.Development and application of water hammer wave velocity calculation chart of wellbore gas-liquid two-phase flow[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2018, 33(1): 79-84.
[19] ZHANG Z, WANG H.Sealed annulus thermal expansion pressure mechanical calculation method and application among multiple packers in HPHT gas wells[J]. Journal of Natural Gas Science and Engineering, 2016, 31: 692-702.
[20] ZHANG Z, WANG H.Effect of thermal expansion annulus pressure on cement sheath mechanical integrity in HPHT gas wells[J]. Applied Thermal Engineering, 2017, 118: 600-611.
[21] 马新华, 郑得文, 申瑞臣, 等. 中国复杂地质条件气藏型储气库建库关键技术与实践[J]. 石油勘探与开发, 2018, 45(3): 489-499.
MA Xinhua, ZHENG Dewen, SHEN Ruichen, et al.Key technologies and practice for gas field storage facility construction of complex geological conditions in China[J]. Petroleum Exploration and Development, 2018, 45(3): 489-499.
[22] 左立华, 于伟, 苗继军, 等. 天然裂缝多孔介质中流体运移的流线模拟[J]. 石油勘探与开发, 2019, 46(1): 125-131.
ZUO Lihua, YU Wei, MIAO Jijun, et al.Streamline modeling of fluid transport in naturally fractured porous medium[J]. Petroleum Exploration and Development, 2019, 46(1): 125-131.
[23] 中国国家标准化管理委员会. 天然气压缩因子的计算: GB/T 17747.1—2011[S]. 北京: 中国标准出版社, 2011.
China National Standardization Management Committee. Nature gas: Calculation of compression factor: GB/T 17747.1—2011[S]. Beijing: Standards Press of China, 2011.
文章导航

/