油气勘探

盐间超压裂缝形成机制及其页岩油气地质意义——以渤海湾盆地东濮凹陷古近系沙河街组三段为例

  • 刘卫彬 ,
  • 周新桂 ,
  • 徐兴友 ,
  • 张世奇
展开
  • 1. 中国地质调查局油气资源调查中心,北京100029;
    2. 中国石油大学(华东),山东青岛266580
刘卫彬(1991-),男,河南周口人,硕士,中国地质调查局油气资源调查中心工程师,主要从事页岩油气资源调查及储集层裂缝研究。地址:北京市海淀区北四环中路267号北京奥运大厦,中国地质调查局油气资源调查中心,邮政编码:100029。E-mail: ogslwb@126.com

收稿日期: 2019-05-30

  网络出版日期: 2020-05-19

基金资助

国家科技重大专项“东濮凹陷油气富集规律与增储领域”(2011ZX05006-004); 中国地质调查局“大兴安岭西缘中生界油气战略选区调查”(121201021000150018)

Formation of inter-salt overpressure fractures and their significances to shale oil and gas: A case study of the third member of Paleogene Shahejie Formation in Dongpu sag, Bohai Bay Basin

  • LIU Weibin ,
  • ZHOU Xingui ,
  • XU Xingyou ,
  • ZHANG Shiqi
Expand
  • 1. Oil & Gas Survey, China Geological Survey, Beijing 100029, China;
    2. China University of Petroleum, Qingdao 266580, China

Received date: 2019-05-30

  Online published: 2020-05-19

摘要

以渤海湾盆地东濮凹陷古近系沙河街组三段盐间富有机质页岩为例,综合运用薄片鉴定、扫描电镜、流体包裹体分析、测井资料分析、地层压力反演等手段,对盐间页岩超压成因及超压裂缝的发育特征、形成演化机制和期次及页岩油气地质意义进行研究。结果表明,东濮凹陷盐湖盆地普遍发育超压,盐膏岩层封堵及欠压实作用、生烃增压作用、黏土矿物转化脱水作用、断层封闭作用是形成超压的4个主要因素。盐间超压裂缝规模较小,平均长度356.2 μm,平均地下开度11.6 μm,但密集发育,平均面密度0.76 cm/cm2,且多伴随油气充注,有效性好。超压缝主要形成于距今25~30 Ma和距今0~5 Ma的两次油气大规模充注时期。盐间超压裂缝对页岩油气具有储集空间和运移通道双重作用,对孔隙度的贡献率为22.3%,对渗透率的贡献率为51.4%,可连通多尺度裂缝系统,大幅改善储集层物性。在开发过程中,盐间超压裂缝可影响水力压裂缝的延伸和形态,形成复杂的高渗透性体积缝网,提升水力压裂效果,增加页岩油气产能。图11表3参39

本文引用格式

刘卫彬 , 周新桂 , 徐兴友 , 张世奇 . 盐间超压裂缝形成机制及其页岩油气地质意义——以渤海湾盆地东濮凹陷古近系沙河街组三段为例[J]. 石油勘探与开发, 2020 , 47(3) : 523 -533 . DOI: 10.11698/PED.2020.03.08

Abstract

Taking the inter-salt organic-rich shales in the third member of Paleogene Shahejie Formation (Es3) of Dongpu sag in Bohai Bay Basin as an example, the origin of overpressure, development characteristics, formation and evolution mechanism, formation stages and geological significance on shale oil and gas of overpressure fractures in the inter-salt shale reservoir were investigated by means of thin section identification, scanning electron microscopy observation, analysis of fluid inclusions, logging data analysis, and formation pressure inversion. The results show that overpressure is universal in the salt-lake basin of Dongpu sag, and under-compaction caused by the sealing of salt-gypsum layer, pressurization due to hydrocarbon generation, transformation and dehydration of clay minerals, and fault sealing are the 4 main factors leading to the occurrence of overpressure. The overpressure fractures are small in scale, with an average length of 356.2 μm and an average underground opening of 11.6 μm. But they are densely developed, with an average surface density of 0.76 cm/cm2. Moreover, they are often accompanied by oil and gas charging, and thus high in effectiveness. Overpressure fractures were mainly formed during two periods of large-scale oil and gas charging, approximately 30-25 Ma ago and 5-0 Ma ago. Inter-salt overpressure fractures play dual roles as the storage space and migration paths of shale oil and gas. They contribute 22.3% to the porosity of shale reservoir and 51.4% to the permeability. They can connect fracture systems of multiple scales, greatly improving the quality of shale reservoir. During the development of shale oil and gas, inter-salt overpressure fractures can affect the extension and morphology of hydraulic fractures, giving rise to complex and highly permeable volumetric fracture networks, improving hydraulic fracturing effect and enhancing shale oil and gas productivity.

参考文献

[1] BUSTIN R M.Gas shale tapped for big pay[J]. AAPG Explorer, 2005, 26(2): 5-7.
[2] BOWKER K A.Barnett Shale gas production, Fort Worth Basin: Issues and discussion[J]. AAPG Bulletin, 2007, 91(4): 523-533.
[3] 邹才能, 董大忠, 杨桦, 等. 中国页岩气形成条件及勘探实践[J]. 天然气工业, 2011, 31(12): 26-39.
ZOU Caineng, DONG Dazhong, YANG Hua, et al.Conditions of shale gas accumulation and exploration practices in China[J]. Natural Gas Industry, 2011, 31(12): 26-39.
[4] 张金川, 林腊梅, 李玉喜, 等. 页岩油分类与评价[J]. 地学前缘, 2012, 19(5): 322-331.
ZHANG Jinchuan, LIN Lamei, LI Yuxi, et al.Classification and evaluation of shale oil[J]. Earth Science Frontiers, 2012, 19(5): 322-331.
[5] 柳波, 郭小波, 黄志龙, 等. 页岩油资源潜力预测方法探讨[J]. 中南大学学报(自然科学版), 2013, 44(4): 1472-1478.
LIU Bo, GUO Xiaobo, HUANG Zhilong, et al.Discussion on prediction method for hydrocarbon resource potential of shale oil: Taking Lucaogou Formation shale oil of Malang sag as case[J]. Journal of Central South University (Science and Technology), 2013, 44(4): 1472-1478.
[6] 宁方兴. 济阳坳陷页岩油富集主控因素[J]. 石油学报, 2015, 36(8): 905-914.
NING Fangxing.The main control factors of shale oil enrichment in Jiyang Depression[J]. Acta Petrolei Sinica, 2015, 36(8): 905-914.
[7] 黄爱华, 薛海涛, 王民, 等. 东濮凹陷沙三下亚段页岩油资源潜力评价[J]. 长江大学学报(自然科学版), 2017, 14(3): 1-6.
HUANG Aihua, XUE Haitao, WANG Min, et al.Resource potential evaluation of Es3 shale oil in Dongpu Depression[J]. Journal of Yangtze University (Natural Science Edition), 2017, 14(3): 1-6.
[8] 骆杨, 赵彦超, 吕新华. 东濮凹陷柳屯洼陷沙河街组三段上亚段盐间页岩储层特征[J]. 石油学报, 2013, 34(2): 293-300.
LUO Yang, ZHAO Yanchao, LYU Xinhua.Characterization of the upper Es3 inter-salt shale reservoir in Liutun Sag Dongpu Depression[J]. Acta Petrolei Sinica, 2013, 34(2): 293-300.
[9] 冷济高, 刘晓峰, 庞雄奇, 等. 盐间页岩裂缝超压油气藏成藏作用: 以东濮凹陷文留构造为例[J]. 石油勘探与开发, 2006, 33(6): 692-696.
LENG Jigao, LIU Xiaofeng, PANG Xiongqi, et al.Overpressured fractured mudstone reservoir in salt-mud interbed: A case from Wenliu structure in Dongpu Sag[J]. Petroleum Exploration and Development, 2006, 33(6): 692-696.
[10] 汪功怀, 邓明霞, 宋萍, 等. 东濮凹陷沙三上盐间页岩裂缝油气藏地震识别及描述[J]. 断块油气田, 2011, 18(4): 461-464.
WANG Gonghuai, DENG Mingxia, SONG Ping, et al.Seismic identification and description technique for upper Es3 fractured mudstone reservoir with salt interbed in Dongpu Depression[J]. Fault Block Oil and Gas Field, 2011, 18(4): 461-464.
[11] CURTIS J B.Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938.
[12] ZENG L B, SU H, TANG X M, et al.Fractured tight sandstone reservoirs: A new play type in the Dongpu Depression, Bohai Bay Basin, China[J]. AAPG Bulletin, 2013, 97(3): 363-377.
[13] 刘卫彬, 张世奇, 李世臻, 等. 东濮凹陷沙三段储层微裂缝发育特征及意义[J]. 地质通报, 2018, 37(S1): 496-502.
LIU Weibin, ZHANG Shiqi, LI Shizhen, et al.Development characteristics and geological significance of microfractures in the Es3 reservoirs of Dongpu Depression[J]. Geologcal Bulletin of China, 2018, 37(S1): 496-502.
[14] NELSON R A.Geologic analysis of naturally fractured reservoirs[M]. Houston: Gulf Publishing Company, 1985: 1-26.
[15] 戴俊生, 汪必峰, 马占荣, 等. 脆性低渗透砂岩破裂准则研究[J]. 新疆石油地质, 2007, 28(4): 393-395.
DAI Junsheng, WANG Bifeng, MA Zhanrong.Research on cracking principles of brittle low-permeability sands[J]. Xinjiang Petroleum Geology, 2007, 28(4): 393-395.
[16] ZENG L B.Microfracturing in the Upper Triassic Sichuan Basin tight gas sandstones: Tectonic, over pressuring, and digenetic origins[J]. AAPG Bulletin, 2010, 94(12): 1811-1825.
[17] 丁文龙, 许长春, 久凯, 等. 页岩裂缝研究进展[J]. 地球科学进展, 2011, 26(2): 135-144.
DING Wenlong, XU Changchun, JIU Kai, et al.The research progress of shale fractures[J]. Advances in Earth Science, 2011, 26(2): 135-144.
[18] 周新桂, 张林炎, 黄臣军, 等. 华庆地区长63储层裂缝分布模型与裂缝有效性[J]. 吉林大学学报(地球科学版), 2012, 42(3): 689-697.
ZHOU Xingui, ZHANG Linyan, HUANG Chenjun, et al.Distraction network conceptual model and validity of fractures in Chang 63 low permeable reservoir in Huaqing Area[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(3): 689-697.
[19] 刘卫彬, 周新桂, 李世臻, 等. 构造裂缝对低孔低渗储层的影响作用研究: 以东濮凹陷沙三段为例[J]. 天然气地球科学, 2016, 27(11): 1993-2004.
LIU Weibin, ZHOU Xingui, LI Shizhen, et al.The influences of tectonic fractures on low-porosity and low-permeability sandston reservoirs: A case study of third member of Shahejie Formation in Dongpu Depression[J]. Natural Gas Geoscience, 2016, 27(11): 1993-2004.
[20] 袁玉松, 周雁, 邱登峰, 等. 埋藏过程中页岩非构造裂缝的形成演化模式[J]. 石油与天然气地质, 2015, 36(5): 822-827.
YUAN Yusong, ZHOU Yan, QIU Dengfeng, et al.Evolutionary patterns of non-tectonic fractures in shale during burial[J]. Oil & Gas Geology, 2015, 36(5): 822-827.
[21] 刘卫彬, 张世奇, 徐兴友, 等. 断层相关裂缝的发育模式及分布预测: 以东濮凹陷沙三段为例[J]. 地球科学与环境学报, 2018, 40(3): 308-321.
LIU Weibin, ZHANG Shiqi, XU Xingyou, et al.The development model and prediction of fault-related fractures: A case study of third member of Shahejie Formation in Dongpu Depression[J]. Journal of Earth Sciences and Environment, 2018, 40(3): 308-321.
[22] 刘景东, 蒋有录. 东濮凹陷中央隆起带北部古近系异常高压与油气成藏的关系[J]. 天然气工业, 2012, 32(12): 30-36.
LIU Jingdong, JANG Youlu.Relationship between abnormally high pressure and hydrocarbon accumulation of the Paleogene reservoirs in the northern part of central uplift, Dongpu Sag, Bohai Bay Basin[J]. Natural Gas Industry, 2012, 32(12): 30-36.
[23] 梁正中, 袁波, 常振恒, 等. 渤海湾盆地文东地区膏盐岩与超压油气藏分布[J]. 海洋地质前沿, 2011, 27(10): 22-26.
LIANG Zhengzhong, YUAN Bo, CHANG Zhenheng, et al.Distribution of evaporites and over-pressured reservoirs in the Shahejie formation in the eastern Wenliu area, Dongpu Depression, Bohai Bay Basin[J]. Marine Geology Frontiers, 2011, 27(10): 22-26.
[24] HAO F, ZOU H Y, GONG Z S, et al.Hierarchies of overpressure retardation of organic matter maturation: Case studies from petroleum basins in China[J]. AAPG Bulletin, 2007, 91(10): 1467-1498.
[25] JOWETT E C, CATHLES L M, DAVIS B W.Predicting depths of grypsum dehydration in evaporitic sedimentary basins[J]. AAPG Bulletin, 1993, 77(3): 402-413.
[26] 李小强, 赵彦超. 东濮凹陷柳屯洼陷盐湖盆地超压成因[J]. 石油与天然气地质, 2012, 33(5): 686-694.
LI Xiaoqiang, ZHAO Yanchao.Overpressure genesis in the Liutun salt-lake sag, Dongpu Depression, Bohai Bay Basin[J]. Oil & Gas Geology, 2012, 33(5): 686-694.
[27] 王东晔. 东濮凹陷北部深层异常高压形成机理及对有机质热演化的抑制作用[J]. 油气地质与采收率, 2013, 20(3): 33-113.
WANG Dongye.Forming mechanism of deep overpressure and its inhibitory effect on the thermal evolution of organic matter in the north part of Dongpu Depression[J]. Petroleum Geology and Recovery Efficiency, 2013, 20(3): 33-113.
[28] BRUCE C.Smectite dehydratiorr its relation to structural development and hydrocarhon accumulation in northern Gulf of Mexico Basin[J]. AAPG Bulletin, 1984, 68(6): 673-683.
[29] 骆杨, 赵彦超, 陈红汉, 等. 构造应力-流体压力耦合作用下的裂缝发育特征: 以渤海湾盆地东濮凹陷柳屯洼陷裂缝性页岩“油藏”为例[J]. 石油勘探与开发, 2015, 42(2): 177-185.
LUO Yang, ZHAO Yanchao, CHEN Honghan, et al.Fracture characteristics under the coupling effect of tectonic stress and fluid pressure: A case study of the fractured shale oil reservoir in Liutun subsag, Dongpu Sag, Bohai Bay Basin, Eastern China[J]. Petroleum Exploration and Development, 2015, 42(2): 177-185.
[30] 蒋有录, 房磊, 谈玉明, 等. 渤海湾盆地东濮凹陷不同区带油气成藏期差异性及主控因素[J]. 地质论评, 2015, 61(6): 1321-1331.
JIANG Youlu, FANG Lei, TAN Yuming, et al.Differences and main controlling factors of accumulation periods in Dongpu Sag, Bohai Bay Basin[J]. Geological Review, 2015, 61(6): 1321-1331.
[31] MA C F, DEREK E, DONG C M, et al.Controls of hydrocarbon generation on the development of expulsion fractures in organic-rich shale: Based on the Paleogene Shahejie Formation in the Jiyang Depression, Bohai Bay Basin, East China[J]. Marine and Petroleum Geology, 2017, 86(7): 1406-1416.
[32] 贾承造, 邹才能, 杨智, 等. 陆相油气地质理论在中国中西部盆地的重大进展[J]. 石油勘探与开发, 2018, 45(4): 546-560.
JIA Chengzao, ZOU Caineng, YANG Zhi, et al.Significant progress of continental petroleum geology theory in basins of Central and Western China[J]. Petroleum Exploration and Development, 2018, 45(4): 546-560.
[33] KOBCHENKO M, PANAHI H, RENARD F, et al.4D imaging of fracturing in organic-rich shales during heating[J]. Journal of Geophysical Research, 2011, 116(12): 7926.
[34] 马存飞, 董春梅, 栾国强, 等. 页岩自然流体压力缝类型、特征及其作用: 以中国东部古近系为例[J]. 石油勘探与开发, 2016, 43(4): 580-589.
MA Cunfei, DONG Chunmei, LUAN Guoqiang, et al.Types, characteristics and effects of natural fluid pressure fractures in shale: A case study of the Paleogene strata in Eastern China[J]. Petroleum Exploration and Development, 2016, 43(4): 580-589.
[35] 张士诚, 郭天魁, 周彤, 等. 天然页岩压裂裂缝扩展机理试验[J]. 石油学报, 2014, 35(3): 496-503.
ZHANG Shicheng, GUO Tiankui, ZHOU Tong, et al.Fracture propagation mechanism experiment of hydraulic fracturing in natural shale[J]. Acta Petrolei Sinica, 2014, 35(3): 496-503.
[36] 程远方, 常鑫, 孙元伟, 等. 基于断裂力学的页岩储层缝网延伸形态研究[J]. 天然气地球科学, 2014, 25(4): 603-611.
CHENG Yuanfang, CHANG Xin, SUN Yuanwei, et al.Research on fracture network propagation pattern of shale reservoir based on fracture mechanics[J]. Natural Gas Geoscience, 2014, 25(4): 603-611.
[37] 许丹, 胡瑞林, 高玮, 等. 页岩纹层结构对水力裂缝扩展规律的影响[J]. 石油勘探与开发, 2015, 42(4): 523-528.
XU Dan, HU Ruilin, GAO Wei, et al.Effects of laminated structure on hydraulic fracture propagation in shale[J]. Petroleum Exploration and Development, 2015, 42(4): 523-528.
[38] GONG L, SU X, GAO S, et al.Characteristics and formation mechanism of natural fractures in the tight gas sandstones of Jiulongshan Gas Field, China[J]. Journal of Petroleum Science and Engineering, 2019, 175(4): 1112-1121.
[39] 刘乃震, 张兆鹏, 邹雨时, 等. 致密砂岩水平井多段压裂裂缝扩展规律[J]. 石油勘探与开发, 2018, 45(6): 1059-1068.
LIU Naizhen, ZHANG Zhaopeng, ZOU Yushi, et al.Propagation law of hydraulic fractures during multi-staged horizontal well fracturing in a tight reservoir[J]. Petroleum Exploration and Development, 2018, 45(6): 1059-1068.
文章导航

/