油气勘探

浅水超覆沉积富有机质细粒沉积物沉积环境与岩石学特征——以塔里木盆地西北部寒武系玉尔吐斯组为例

  • 金值民 ,
  • 谭秀成 ,
  • 唐浩 ,
  • 沈安江 ,
  • 乔占峰 ,
  • 郑剑锋 ,
  • 李飞 ,
  • 张世轩 ,
  • 陈雷 ,
  • 周成刚
展开
  • 1. 油气藏地质及开发工程国家重点实验室(西南石油大学),成都 610500;
    2. 中国石油集团碳酸盐岩储层重点实验室,杭州 310023;
    3. 中国石油东方地球物理公司研究院库尔勒分院,新疆库尔勒 841000
金值民(1994-),男,甘肃张掖人,现为西南石油大学在读博士研究生,主要从事储集层地质学方面研究。地址:四川省成都市新都区,西南石油大学地球科学与技术学院,邮政编码:610500。E-mail: jzmssg052@163.com

收稿日期: 2019-08-07

  网络出版日期: 2020-05-19

基金资助

国家“十三五”科技攻关重大专项(2016ZX05004002-001); 国家自然科学基金项目(41602147)

Sedimentary environment and petrological features of organic-rich fine sediments in shallow water overlapping deposits: A case study of Cambrian Yuertus Formation in northwestern Tarim Basin, NW China

  • JIN Zhimin ,
  • TAN Xiucheng ,
  • TANG Hao ,
  • SHEN Anjiang ,
  • QIAO Zhanfeng ,
  • ZHENG Jianfeng ,
  • LI Fei ,
  • ZHANG Shixuan ,
  • CHEN Lei ,
  • ZHOU Chenggang
Expand
  • 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. Key Laboratory of Carbonate Reservoir, CNPC, Hangzhou 310023, China;
    3. Korla Branch of Geophysical Research Institute, BGP Inc., Korla 841000, China

Received date: 2019-08-07

  Online published: 2020-05-19

摘要

以塔里木盆地西北部阿克苏—柯坪—乌什地区寒武系玉尔吐斯组露头剖面为例,通过对露头剖面的宏、微观研究,对富有机质细粒沉积岩形成环境进行分析。研究发现:①玉尔吐斯组下部为富有机质细粒沉积岩或与硅质岩的薄韵律互层,向上变为陆源碎屑混积的颗粒滩和逆粒序的碳酸盐岩;②与暗色泥页岩韵律互层的薄层灰岩具逆粒序;③薄层状硅质岩具交代残余颗粒结构、叠层状构造和孔洞胶结组构;④混积颗粒滩变浅序列顶部具铁质结壳层,其下见溶沟、溶缝及囊状溶洞、近地表喀斯特(塑形)角砾以及岩溶系统内的角砾、陆源碎屑充填物等,这些均为暴露岩溶标志;⑤露头和地震剖面上,不整合面或暴露面之上的富有机质细粒沉积岩具典型的超覆特征。综合分析认为,寒武系玉尔吐斯组富有机质细粒沉积物形成于缺氧—次氧化的受限海湾澙湖环境,其形成可能受高的古生产力、氧交换不畅共同控制,进而建立了其浅水超覆沉积模式。结果将有助于丰富完善富有机质细粒沉积岩沉积学理论。图12参60

本文引用格式

金值民 , 谭秀成 , 唐浩 , 沈安江 , 乔占峰 , 郑剑锋 , 李飞 , 张世轩 , 陈雷 , 周成刚 . 浅水超覆沉积富有机质细粒沉积物沉积环境与岩石学特征——以塔里木盆地西北部寒武系玉尔吐斯组为例[J]. 石油勘探与开发, 2020 , 47(3) : 476 -489 . DOI: 10.11698/PED.2020.03.04

Abstract

Taking the Cambrian Yuertus Formation outcrop profiles in the Aksu-Keping-Wushi areas of northwestern Tarim Basin as examples, the depositional environments of organic rich fine sediment were analyzed by examining the outcrop profiles macroscopically and microscopically. The study reveals that: (1) The lower part of the Yuertus Formation consists of organic-rich fine sediment or thin rhythmic interbeds of organic-rich fine sediment and siliceous sediment, the formation transforms to terrigenous diamictic grain shoal and inverse grading carbonate rocks upward. (2) The thin limestone interbedded with dark shale rhythmically has inverse grading. (3) The thin-bedded siliceous rock has metasomatic residual granular texture, stromatolithic structure and cementation fabric in vugs. (4) There are iron crust layers at the top of the shallowing diamictic grain shoal, beneath which exposed karst signs, such as karrens, dissolved fissures, sack-like vugs, near surface karst (plastic) breccia, breccia inside the karst system and terrigenous clastic fillings, can be seen. (5) Both the outcrops and seismic profiles show that organic-rich fine sediments above the unconformities or exposed surfaces are characterized by overlapping. The organic-rich fine sediment of the Cambrian Yuertus Formation was deposited in the anoxic-suboxidized restricted gulf lagoon environment, and its formation was controlled by high paleoproductivity and poor oxygen exchange jointly, then a shallow-water overlapping sedimentary model has been established. The results will help enrich and improve the sedimentary theory of organic-rich fine sediments.

参考文献

[1] POLLASTRO R M.Total petroleum system assessment of undiscovered resources in the giant Barnett Shale continuous (unconventional) gas accumulation, Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 551-578.
[2] CHEN L, LU Y, JIANG S, et al.Heterogeneity of the Lower Silurian Longmaxi marine shale in the southeast Sichuan Basin of China[J]. Marine and Petroleum Geology, 2015, 65: 232-246.
[3] GHADEER S G, MACQUAKER J H S. Sediment transport processes in an ancient mud-dominated succession: A comparison of processes operating in marine offshore settings and anoxic basinal environments[J]. Journal of the Geological Society, 2011, 168(5): 1121-1132.
[4] APLIN A C, MACQUAKER J H S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059.
[5] PLINT A G.Mud dispersal across a Cretaceous prodelta: Storm- generated, wave-enhanced sediment gravity flows inferred from mudstone microtexture and microfacies[J]. Sedimentology, 2014, 61(3): 609-647.
[6] LAZAR O R, BOHACS K M, MACQUAKER J H S, et al. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines[J]. Journal of Sedimentary Research, 2015, 85(3): 230-246.
[7] 姜在兴, 梁超, 吴靖, 等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报, 2013, 34(6): 1031-1039.
JIANG Zaixing, LIANG Chao, WU Jing, et al.Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.
[8] BLATT H, MIDDLETON G V, MURRAY R C.Origin of sedimentary rocks[M]. Soil Science, 1973, 115(5): 400.
[9] KOHL D, SLINGERLAND R, ARTHUR M, et al.Sequence stratigraphy and depositional environments of the Shamokin(Union Springs) Member, Marcellus Formation, and associated strata in the Middle Appalachian Basin[J]. AAPG Bulletin, 2014, 98: 483-513.
[10] SCHIEBER J, MAKINO Y, KUEHL S A.Evidence for high-energy events and shallow-water deposition in the Chattanooga Shale, Devonian, central Tennessee, USA[J]. Sedimentary Geology, 1994, 93(3/4): 193-208.
[11] MACQUAKER J H S, BOHACS K M. On the accumulation of mud[J]. Science, 2007, 318(5857): 1734-1735.
[12] GHADEER S G, MACQUKER J H S. The role of event beds in the preservation of organic carbon in fine-grained sediments: Analyses of the sedimentological processes operating during deposition of the Whitby Mudstone Formation(Toarcian, Lower Jurassic) preserved in northeast England[J]. Marine and Petroleum Geology, 2012, 35(1): 309-320.
[13] DAVIES R J, CLARKW I R.Submarine slope failure primed and triggered by silica and its diagenesis[J]. Basin Research, 2010, 18(3): 339-350.
[14] MACQUAKER J H S, BENTLEY S J, BOHACS K M. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: Reappraising sediment transport processes operating in ancient mudstone successions[J]. Geology, 2010, 38(10): 947-950.
[15] CURRAN K J, HILL P S, MILLIGAN T G.Fine-grained suspended sediment dynamics in the Eel River flood plume[J]. Continental Shelf Research, 2002, 22(17): 2537-2550.
[16] CURRAN K J, HILL P S, SCHELL T M, et al, Inferring the mass fraction of floc-deposited mud: Application to fine-grained turbidites[J]. Sedimentology, 2010, 51(5): 927-944.
[17] WILSON R D, SCHIEBER J.Muddy prodeltaic hyperpycnites in the Lower Genesee Group of central New York, USA: Implications for mud transport in epicontinental seas[J]. Journal of Sedimentary Research, 2014, 84(10): 866-874.
[18] SMITH L B, SCHIEBER J, WILSON R D.Shallow-water onlap model for the deposition of Devonian black shales in New York, USA[J]. Geology, 2019, 47(3): 279-283.
[19] 赵靖舟. 塔里木盆地北部寒武—奥陶系海相烃源岩重新认识[J]. 沉积学报, 2001, 19(1): 117-124.
ZHAO Jingzhou.Evoluation on the Cambrian-Ordovician marine source rocks from the north Tarim Basin[J]. Acta Sedimentologica Sinica, 2001, 19(1): 117-124.
[20] ZHANG S, HUANG H, SU J, et al, Geochemistry of Paleozoic marine oils from the Tarim Basin, NW China. Part 4: Paleobiodegradation and oil charge mixing[J]. Organic Geochemistry, 2014, 67(1): 41-57.
[21] 顾忆, 邵志兵, 陈强路, 等. 塔河油田油气运移与聚集规律[J]. 石油实验地质, 2007, 29(3): 224-230.
GU Yi, SHAO Zhibing, CHEN Qianglu, et al.Oil mixgration and accumulation patrern in the Tahe oilfield[J]. Petroleum Geology & Experiment, 2007, 29(3): 224-230.
[22] 孙省利, 陈践发, 刘文汇, 等. 塔里木盆地下寒武统硅质岩地球化学特征及其形成环境[J]. 石油勘探与开发, 2004, 31(3): 45-48.
SUN Xingli, CHEN Jianfa, LIU Wenhui, et al.Geochemical characteristics of cherts of Lower Cambrian in the Tarim Basin and its implication for environment[J]. Petroleum Exploration and Development, 2004, 31(3): 45-48.
[23] 于炳松, 陈建强, 李兴武, 等. 塔里木盆地肖尔布拉克剖面下寒武统底部硅质岩微量元素和稀土元素地球化学及其沉积背景[J]. 沉积学报, 2004, 22(1): 59-66.
YU Bingsong, CHEN Jianqiang, LI Xingwu, et al.Rare earth and trace element patterns in bedded-cherts from the bottom of the Lower Cambrian in the Northern Tarim Basin, Northwest China: Implication for depositional environments[J]. Acta Sedimentologica Sinica, 2004, 22(1): 59-66.
[24] 陈强路, 储呈林, 胡广, 等. 塔里木盆地柯坪地区寒武系玉尔吐斯组沉积环境分析[J]. 石油实验地质, 2017, 39(3): 311-317.
CHEN Qianglu, CHU Chenglin, HU Guang, et al.Sedimentary characteristics and depositional environment of Yuertusi Formation in Keping area, Tarim Basin[J]. Petroleum Geology & Experiment, 2017, 39(3): 311-317.
[25] 赵宗举, 罗家洪, 张运波, 等. 塔里木盆地寒武纪层序岩相古地理[J]. 石油学报, 2011, 32(6): 937-948.
ZHAO Zongjv, LUO Jiahong, ZHANG Yunbo, et al.Lithofacies paleogergraphy of Cambrian sequences in the Tarim Basin[J]. Acta Perolei Sinica, 2011, 32(6): 937-948.
[26] 杨程宇, 李美俊, 倪智勇, 等. 塔里木盆地西北缘玉尔吐斯组硅质岩成因及石油地质意义[J]. 沉积学报, 2016, 34(4): 653-661.
YANG Chengyu, LI Meijun, NI Zhiyong, et al.Siliceous rock origin and significance in the uyirtus formation northwestern margin of Tarim Basin[J]. Acta Sedimentologica Sinica, 2016, 34(4): 653-661.
[27] 张敏, 张智礼, 于深洋, 等. 新疆塔里木西北地区寒武纪初的碳酸盐岩微相和环境指标[J]. 微体古生物学报, 2016, 33(2): 190-200.
ZHANG Min, ZHANG Zhili, YU Shenyang, et al.Carbonate microfacies and encironental parameters of the lower cambrian in the Aksu-Wushi region, Northwest Tarim, Northwest China[J]. Acta Micropalaeontologica Sinica, 2016, 33(2): 190-200.
[28] TUO J, PHILP R P.Occurrence and distribution of high molecular weight hydrocarbons in selected non-marine source rocks from the Liaohe, Qaidam and Tarim Basins, China[J]. Organic Geochemistry, 2003, 34(11): 1543-1558.
[29] SAFONOVA I Y, SANTOSH M.Accretionary complexes in the Asia-Pacific region: Tracing archives of ocean plate stratigraphy and tracking mantle plumes[J]. Gondwana Research, 2014, 25(1): 126-158.
[30] 李江海, 周肖贝, 李维波, 等. 塔里木盆地及邻区寒武纪—三叠纪构造古地理格局的初步重建[J]. 地质论评, 2015, 61(6): 1225-1234.
LI Jianghai, ZHOU Xiaobei, LI Weibo, et al.Preliminary reconstruction of tectonic paleogeography of Tarim Basin and its adjacent aeras from Cambrian to Triassic, NW China[J]. Geological Review, 2015, 61(6): 1225-1234.
[31] 冯增昭, 鲍志东, 吴茂炳, 等. 塔里木地区寒武纪岩相古地理[J]. 古地理学报, 2006, 8(4): 427-439.
FENG Zengzhao, BAO Zhidong, WU Maobing, et al.Lithofacies palaeogeography of the Cambrian in Tarim area[J]. Journal of palaeogeography, 2006, 8(4): 427-439.
[32] STEINER M, WALLIS E, ERDTMANN B D, et al.Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils: Insights into a Lower Cambrian facies and bio-evolution[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2001, 169(3): 165-191.
[33] 熊冉, 周进高, 倪新锋, 等. 塔里木盆地下寒武统玉尔吐斯组烃源岩分布预测及油气勘探的意义[J]. 天然气工业, 2015, 35(10): 49-56.
XIONG Ran, ZHOU Jingao, NI Xinfeng, et al.Distribution prediction of Lower Cambrian Yuertusi Formation source rocks and its significance to oil and gas exploration in the Tarim Basin[J]. Natural Gas Industry, 2015, 35(10): 49-56.
[34] 周志毅, 赵治信, 胡兆珣, 等. 塔里木盆地各纪地层[M]. 北京: 科学出版社, 2001.
ZHOU Zhiyi, ZHAO Zhixin, HU Zhaoxun, et al.Stratigraphy of Tarim Basin[M]. Beijing: Science Press, 2001.
[35] 吴林, 管树巍, 任荣, 等. 前寒武纪沉积盆地发育特征与深层烃源岩分布: 以塔里木新元古代盆地与下寒武统烃源岩为例[J]. 石油勘探与开发, 2016, 43(6): 905-915.
WU Lin, GUAN Shuwei, REN Rong, et al.The characteristics of Precambrian sedimentary basin and the distribution of deep source rock: A case study of Tarim Basin in Neoproterozoic and source rocks in Early Cambrian, Western China[J]. Petroleum Exploration and Development, 2016, 43(6): 905-915.
[36] ZHANG W, GUAN P, JIAN X, et al.In situ geochemistry of Lower Paleozoic dolomites in the northwestern Tarim basin: Implications for the nature, origin, and evolution of diagenetic fluids[J]. Geochemistry Geophysics Geosystems, 2015, 15(7): 2744-2764.
[37] 杨宗玉, 罗平, 刘波, 等. 塔里木盆地阿克苏地区下寒武统玉尔吐斯组硅质岩分类及成因[J]. 地学前缘, 2017, 24(5): 245-264.
YANG Zongyu, LUO Ping, LIU Bo, et al.Analysis of petrological characteristics and origin of siliceous rocks during the earliest Cambrian Yurtus Formation in the Aksu area of the Tarim Basin in Northwest China[J]. Earth Science Frontiers, 2017, 24(5): 245-264.
[38] 胡广, 刘文汇, 腾格尔, 等. 塔里木盆地下寒武统泥质烃源岩成烃生物组合的构造-沉积环境控制因素[J]. 石油与天然气地质, 2014, 35(5): 685-695.
HU Guang, LIU Wenhui, TENG Geer, et al.Tectonic-sedimentary constrains for hydrocarbon generating organism assemblage in the Lower Cambrian argillaceous source rocks, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(5): 685-695.
[39] 朱光有, 陈斐然, 陈志勇, 等. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征[J]. 天然气地球科学, 2016, 27(1): 8-21.
ZHU Guangyou, CHEN Feiran, CHEN Zhiyong, et al.Discovery and basic characteristics of the high-quality source rocksof the Cambrian Yuertusi Formation in Tarim Basin[J]. Natural Gas Geoscience, 2016, 27(1): 8-21.
[40] 张静, 张宝民, 单秀琴. 古气候与古海洋对碳酸盐岩储集层发育的控制[J]. 石油勘探与开发, 2014, 41(1): 121-128.
ZHANG Jing, ZHANG Baomin, SHAN Xiuqin.Controlling effects of paleo-climate and paleo-ocean on formation of carbonate reservoirs[J]. Petroleum Exploration and Development, 2014, 41(1): 121-128.
[41] 杨鑫, 徐旭辉, 陈强路, 等. 塔里木盆地前寒武纪古构造格局及其对下寒武统烃源岩发育的控制作用[J]. 天然气地球科学, 2014, 25(8): 1164-1171.
YANG Xin, XU Xuhui, CHEN Qianglu, et al.Palaeotectonics pattern in Pre-Cambrian and its control on the deposition of the Lower Cambrian source rocks in Tarim Basin, NW China[J]. Natural Gas Geoscience, 2014, 25(8): 1164-1171.
[42] ZHOU X, CHEN D, QING H, et al.Submarine silica-rich hydrothermal activity during the earliest Cambrian in the Tarim Basin, Northwest China[J]. International Geology Review, 2014, 56(15): 1906-1918.
[43] XIAO D, TAN X, XI A, et al.An inland facies-controlled eogenetic karst of the carbonate reservoir in the Middle Permian Maokou Formation, southern Sichuan Basin, SW China[J]. Marine and Petroleum Geology, 2016, 72: 218-233.
[44] 谭秀成, 肖迪, 陈景山, 等. 早成岩期喀斯特化研究新进展及意义[J]. 古地理学报, 2015, 17(4): 441-456.
TAN Xiucheng, XIAO Di, CHEN Jingshan, et al.New advance and enlightenment of eogenetic karstification[J]. Journal of Palaeogeography, 2015, 17(4): 441-456.
[45] 金值民, 谭秀成, 郭睿, 等. 伊拉克哈法亚油田白垩系Mishrif组碳酸盐岩孔隙结构及控制因素[J]. 沉积学报, 2018, 36(5): 981-986.
JIN Zhimin, TAN Xiucheng, GUO Rui, et al.Pore structure characteristics and control factors of carbonate reservoirs:the cretaceous Mishrif formation, Halfaya oilfield, Iraq[J]. Acta Sedimentologica Sinica, 2018, 36(5): 981-986.
[46] ZHONG Y, TAN X, ZHAO L, et al.Identification of facies-controlled eogenetic karstification in the Upper Cretaceous of the Halfaya oilfield and its impact on reservoir capacity[J]. Geological Journal, 2019, 54(1): 450-465.
[47] ALGEO T J, LYONS T W.Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21(1): 1-23.
[48] ALGEO T J, MAYNARD J B.Trace-metal covariation as a guide to water-mass conditions in ancient anoxic marine environments[J]. Geosphere, 2008, 4(5): 872-887.
[49] TRIBOVILLARD, NICOLAS, ALGEO, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1): 12-32.
[50] SAHOO S K, PLANAVSKY N J, KENDALL B, et al.Ocean oxygenation in the wake of the Marinoan glaciation[J]. Nature, 2012, 489(7417): 546.
[51] ELBAZ-POULICHET F, SEIDEL J L, JÉZÉQUEL D, et al. Sedimentary record of redox-sensitive elements(U, Mn, Mo) in a transitory anoxic basin(the Thau lagoon, France)[J]. Marine Chemistry, 2005, 95(3/4): 271-281.
[52] 张水昌, 张宝民, 边立曾, 等. 中国海相烃源岩发育控制因素[J]. 地学前缘, 2005, 12(3): 39-48.
ZHANG Shuichang, ZHANG Baomin, BIAN Lizeng, et al.Decelopment constraints of marine source rocks in China[J]. Earth Science Frontiers, 2005, 12(3): 39-48.
[53] 朱传玲, 闫华, 云露, 等. 塔里木盆地沙雅隆起星火1井寒武系烃源岩特征[J]. 石油实验地质, 2014, 36(5): 626-632.
ZHU Chuanling, YAN Hua, YUN Lu, et al.Characteristics of Cambrian source rocks in well XH1, Shaya Uplift, Tarim Basin[J]. Petroleum Geology & Experiment, 2014, 36(5): 626-632.
[54] ZHENG Y, ANDERSON R F, VAN GEEN A, et al.Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin[J]. Geochimica et Cosmochimica Acta, 2000, 64(24): 4165-4178.
[55] ANDERSON R F, FLEISHER M Q.Uranium precipitation in Black Sea sediments[M]. Berlin: Springer, 1991: 443-458.
[56] ALGEO T J, TRIBOVILLARD N.Environmental analysis of paleoceanographic systems based on Molybdenum-Uranium covariation[J]. Chemical Geology, 2009, 268(3): 211-225.
[57] BARNES C E, COCHRAN J K.Geochemistry of uranium in Black Sea sediments[J]. Deep Sea Research Part A Oceanographic Research Papers, 1991, 38(10): S1237-S1254.
[58] YU B, DONG H, WIDOM E, et al.Geochemistry of basal Cambrian black shales and cherts from the Northern Tarim Basin, Northwest China: Implications for depositional setting and tectonic history[J]. Journal of Asian Earth Sciences, 2009, 34(3): 418-436.
[59] 姚春彦. 新疆阿克苏-乌什地区晚埃迪卡拉纪—早寒武世地层地球化学研究:化学地层对比及古海洋环境重建[D]. 南京: 南京大学, 2010.
YAO Chunyan.Stratigraphic geochemistry of the late Ediacaran- Early Cambrian in Akesu-Wushi Area of Xinjiang: Stratigraphic correlation and paleo-enviroment reconstruction[D]. Nanjing: Nanjing University, 2010.
[60] 王飞宇, 刘长伟, 朱雷, 等. 塔里木盆地台盆区寒武系烃源岩有机成熟度[J]. 新疆石油地质, 2002, 23(5): 372-375.
WANG Feiyu, LIU Changwei, ZHU Lei, et al.Study on organic maturity of Cambrian source rocks in Tarim Basin platform area[J]. Xinjiang Petroleum Geology, 2002, 23(5): 372-375.
文章导航

/