油气勘探

数值模拟盐体几何起伏导致的应力扰动

  • 王明文 ,
  • 罗纲 ,
  • 孙云强 ,
  • 常成
展开
  • 1. 武汉大学测绘学院,武汉 430079;
    2. 中国科学院大学地球与行星科学学院,北京 100049
王明文(1994-),男,江苏徐州人,现为中国科学院大学在读硕士研究生,主要从事盐构造动力学数值模拟研究。地址:北京市石景山区玉泉路19号(甲),中国科学院大学地球与行星科学学院,邮政编码:100049。E-mail:themingyi123@gmail.com 联系作者简介:罗纲(1977-),男,四川成都人,博士,武汉大学测绘学院教授,主要从事地球动力学数值模拟研究。地址:武汉市洪山区珞喻路129号,武汉大学测绘学院,邮政编码:430079。E-mail:gluo@sgg.whu.edu.cn

收稿日期: 2019-05-18

  修回日期: 2020-01-20

  网络出版日期: 2020-03-21

基金资助

国家重点研发计划(2018YFC0603500,2016YFC0600310)

Numerical modeling of stress perturbations caused by geometric changes of salt bodies

  • WANG Mingwen ,
  • LUO Gang ,
  • SUN Yunqiang ,
  • CHANG Cheng
Expand
  • 1. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China;
    2. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2019-05-18

  Revised date: 2020-01-20

  Online published: 2020-03-21

摘要

通过构建挤压构造背景应力背景下静态盐构造模型,模拟计算盐盆地周围的应力变化,分析不同几何形状的盐体所导致的应力扰动,同时测试盐体起伏大小对应力扰动的影响。使用有限元方法设计了3个突起洼陷相互组合的双层盐模型,并计算其周围的应力扰动,结果表明盐体几何形状与其周围沉积物中的应力扰动有很大关系,且其突起和洼陷的起伏程度(平缓或陡峭)也会影响应力扰动的大小。挤压构造应力环境下,突起盐体附近产生挤压的水平应力、平面上的法向应力和垂向应力;相反地,洼陷盐体附近产生拉张的水平应力、法向应力和垂向应力扰动。此外,突起的起伏越平缓,所产生的应力扰动越小;洼陷的起伏程度越陡峭,沉积层中的应力扰动会减小越多。以库车坳陷克拉苏西剖面盐构造为例进行了应力模拟实验,证明上述结论适用于该盐构造模型。本研究成果为盐盆地系统盐体周围应力扰动预测提供了依据。图13表1参46

本文引用格式

王明文 , 罗纲 , 孙云强 , 常成 . 数值模拟盐体几何起伏导致的应力扰动[J]. 石油勘探与开发, 2020 , 47(2) : 309 -320 . DOI: 10.11698/PED.2020.02.09

Abstract

By building a static salt structure model under compression stress background, the stress changes around salt basin were simulated to find out the stress perturbations caused by different shapes of salt bodies and test the effect of amplitude of salt body on stress perturbation. A two-layer salt model with 3 bulges and sags was designed with finite element method to calculate the stress perturbation around the salt. The results show that the shape of the salt is closely related to the stress perturbation in the sediments around the salt, and the fluctuations of the bulge and sag (smooth or steep) can also affect the magnitude of the stress perturbation. Extrusion horizontal stress, normal stress and vertical stress on the plane would occur near the salt uplift under compressive tectonic stress environment. In contrast, tensile horizontal stress, normal stress and vertical stress would occur near the salt subsag. In addition, the smoother the bulge, the smaller the stress perturbation produced will be; the steeper the subsag, the more reduction of stress perturbation in the sediment will be. The stress of salt structure in the western of Kelasu of Kuqa depression was simulated, which proves that the previous conclusions are applicable to this salt structure. These conclusions provide scientific basis for the prediction of stress disturbance around the salt basin system.

参考文献

[1] JACKSON M P A. Retrospective salt tectonics[C]//JACKSON M P A, ROBERTS D G, SNELSON S. Salt tectonic: A global perspective. Houston: AAPG Memoir 65, 1995: 1-28.
[2] EDGELL H S.Salt tectonism in the Persian Gulf Basin[J]. Geological Society London Special Publications, 1996, 100(1): 129-151.
[3] MCBRIDE B C, WEIMER P, ROWAN M G.The effect of allochthonous salt on the petroleum systems of northern Green Canyon and Ewing Bank(Offshore Louisiana), northern Gulf of Mexico[J]. AAPG Bulletin, 1998, 82(5): 1083-1112.
[4] 唐祥华. 世界含盐盆地中的油气资源[J]. 中国地质, 1990, 38(7): 27-28.
TANG Xianghua.Oil and gas resources in salt-bearing basins in the world[J]. Geology in China, 1990, 38(7): 27-28.
[5] 梁大川, 张英. 盐层的特殊性及其钻井液技术[J]. 西部探矿工程, 2004, 16(8): 74-75.
LIANG Dachuan, ZHANG Ying.The particularity of subsalt and drilling fluid techniques[J]. West-China Exploration Engineering, 2004, 16(8): 74-75.
[6] 余一欣, 周心怀, 彭文绪, 等. 盐构造研究进展述评[J]. 大地构造与成矿学, 2011, 35(2): 169-182.
YU Yixin, ZHOU Xinhuai, PENG Wenxu, et al.An overview on salt structures[J]. Geotectonica et Metallogenia, 2011, 35(2): 169-182.
[7] 张锦荣, 陈安明, 周玉仓. 塔里木深井盐膏层钻井技术[J]. 石油钻探技术, 2003, 31(6): 25-27.
ZHANG Jinrong, CHEN Anming, ZHOU Yucang.The drilling technology for penetrating carbonate formation in Tarim Deep Wells[J]. Petroleum Drilling Techniques, 2003, 31(6): 25-27.
[8] 张仲培, 王毅, 李建交, 等. 塔里木盆地巴-麦地区古生界油气盖层动态演化评价[J]. 石油与天然气地质, 2014, 35(6): 839-852.
ZHANG Zhongpei, WANG Yi, LI Jianjiao, et al.Dynamic evolution assessment of the Paleozoic hydrocarbon cap rocks in Bachu-Magati area, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 839-852.
[9] 王香增. 钻井工程中盐膏层井眼缩径的数值模拟及最佳工程设计研究[D]. 北京: 中国地质大学, 2006.
WANG Xiangzeng.Numerical modeling and optimum engineering design for hole shrinkage in borehole drilling at salt and gypsum layers[D]. Beijing: China University of Geosciences, 2006.
[10] LI S.Numerical studies of the deformation of salt bodies with embedded carbonate stringers[D]. Aachen, Germany: RWTH Aachen University, 2013.
[11] NIKOLINAKOU M A, HUDEC M R, FLEMINGS P B.Comparison of evolutionary and static modeling of stresses around a salt diaper[J]. Marine and Petroleum Geology, 2014, 57: 537-545.
[12] FREDRICH J T, COBLENTZ D, FOSSUM A F, et al.Stress perturbations adjacent to salt bodies in the deep-water Gulf of Mexico[R]. SPE 84554, 2003.
[13] KOUPRIANTCHIK D, HUNT S P, BOULT P J, et al.Geomechanical modeling of salt diapirs: Generic shapes and a 3-D salt structure from the Officer Basin, South Australia[R]. Torino, Italy: Proceedings of the 11th International Conference, 2005: 1-9.
[14] MACKAY F, INOUE N, FONTOURA S A B, et al. Geomechanical effects of a 3-D vertical salt well drilling by FEA[J]. American Rock Mechanics Association Journal, 2008, 42: 8-41.
[15] LUO G, NIKOLINAKOU M A, FLEMINGS P B, et al.Geomechanical modeling of stresses adjacent to salt bodies: Part 1-Uncoupled models[J]. AAPG Bulletin, 2012, 96(1): 43-64.
[16] NIKOLINAKOU M A, MERRELL M P, LUO G, et al, Geomechanical modeling of the Mad Dog salt, Gulf of Mexico[R]. San Francisco, Calif: American Rock Mechanics Association, 2013.
[17] 曾联波, 周天伟. 塔里木盆地库车坳陷储层裂缝分布规律[J]. 天然气工业, 2004, 24(9): 23-25.
ZENG Lianbo, ZHOU Tianwei.Reservoir fracture distribution law of kuche depression in Talimu Basin[J]. Natural Gas Industry, 2004, 24(9): 23-25.
[18] 邬光辉, 王招明, 刘玉魁, 等. 塔里木盆地库车坳陷盐构造运动学特征[J]. 地质论评, 2004, 50(5): 476-483.
WU Guanghui, WANG Zhaoming, LIU Yukui, et al.Kinematics characteristics of the Kuqa Depression in the Tarim Basin[J]. Geological Review, 2004, 50(5): 476-483.
[19] 汤良杰, 贾承造,金之钧, 等. 库车前陆褶皱冲断带中段第三系盐枕构造[J]. 地质科学, 2003, 38(3): 281-290.
TANG Liangjie, JIA Chengzao, JIN Zhijun, et al.Tertiary salt pillow structures in the central sector of the Kuqa foreland fold-and-thrust belt, Tarim Basin, northwest China[J]. Chinese Journal of Geology, 2003, 38(3): 281-290.
[20] 胡剑风, 刘玉魁, 杨明慧, 等. 塔里木盆地库车坳陷盐构造特征及其与油气的关系[J]. 地质科学, 2004, 39(4): 580-588.
HU Jianfeng, LIU Yukui, YANG Minghui, et al.Salt structure characteristics and its relation to hydrocarbon accumulation in the Kuqa Depression, Tarim Basin[J]. Chinese Journal of Geology, 2004, 39(4): 580-588.
[21] 余一欣. 库车坳陷秋里塔格构造带盐相关构造及其形成机理[D]. 北京: 中国石油大学, 2006.
YU Yixin.The salt-related structures and their formation mechanisms in the Qiulitag structural belt, Kuqa Depression[D]. Beijing: China University of Petroleum, 2006.
[22] 汪新, 王招明, 谢会文, 等. 塔里木库车坳陷新生代盐构造解析及其变形模拟[J]. 中国科学: 地球科学, 2010, 40(12): 1655-1668.
WANG Xin, WANG Zhaoming, XIE Huiwen, et al.Cenozoic salt tectonics and physical models in the Kuqa depression of Tarim Basin, China[J]. SCIENCE CHINA Earth Sciences, 2010, 40(12): 1655-1668.
[23] 汤良杰, 贾承造, 皮学军, 等. 库车前陆褶皱带盐相关构造样式[J]. 中国科学: 地球科学, 2003, 33(1): 38-46.
TANG Liangjie, JIA Chengzao, PI Xuejun, et al.Salt-related structural style of Kuqa foreland fold belt[J]. SCIENCE CHINA Earth Sciences, 2003, 33(1): 38-46.
[24] 汤良杰, 余一欣, 杨文静, 等. 库车前陆褶皱冲断带前缘滑脱层内部变形特征[J]. 中国地质, 2006, 33(5): 944-951.
TANG Liangjie, YU Yixin, YANG Wenjing, et al.Internal deformation features of detachment layers in the front of the Kuqa forland fold-thrust belt[J]. Geology in China, 2006, 33(5): 944-951.
[25] CHEN S, TANG L, JIN Z, et al.Thrust and fold tectonics and the role of evaporites in deformation in the Western Kuqa Foreland of Tarim Basin, Northwest China[J]. Marine & Petroleum Geology,2004, 21(8): 1022-1042.
[26] 张君峰, 高永进, 杨有星, 等. 塔里木盆地温宿凸起油气勘探突破及启示[J]. 石油勘探与开发, 2019, 46(1): 14-24.
ZHANG Junfeng, GAO Yongjin, YANG Youxing, et al.Oil exploration breakthrough in the Wensu salient, northwest Tarim Basin and its implications[J]. Petroleum Exploration and Development, 2019, 46(1): 14-24.
[27] 曾联波, 王贵文. 塔里木盆地库车山前构造带地应力分布特征[J]. 石油勘探与开发, 2005, 32(3): 59-60.
ZENG Lianbo, WANG Guiwen.Distribution of earth stress in Kuche thrust belt, Tarim Basin[J]. Petroleum Exploration and Development, 2005, 32(3): 59-60.
[28] 张明利. 塔里木盆地库车坳陷中新生代构造应力场分析[J]. 地球学报, 2004, 25(6): 615-619.
ZHANG Mingli.An analysis of the Mesozoic2Cenozoic Tectonic Stress Field in Kuqa Depression, Tarim Basin[J]. Acta Geoscientica Sinica, 2004, 25(6): 615-619.
[29] 佘晓宇, 龚晓星, 吕鹏, 等. 江陵凹陷八岭山—花园多层系盐和盐泥构造及其形成机制[J]. 现代地质, 2013, 27(4): 765-773.
SHE Xiaoyu, GONG Xiaoxing, LYU Peng, et al.Balingshan-Huayuan multilayer salt and salt mud tectonics in Jiangling Depression and its formation mechanism[J]. Geoscience, 2013, 27(4): 765-773.
[30] 朱志军, 郭福生. 滇西兰坪盆地金顶铅锌矿盐构造发育特征及其与成矿关系[J]. 大地构造与成矿学, 2016, 40(2): 344-353.
ZHU Zhijun, GUO Fusheng.Characteristics of salt structures and links to Pb-Zn mineralization of the Jinding Deposit in Lanping Basin, Western Yunnan[J]. Geotectonica et Metallogenia, 2016, 40(2): 344-353.
[31] ROWAN M G.Passive-margin salt basins: Hyperextension, evaporite deposition, and salt tectonics[J]. Basin Research, 2014, 26(1): 154-182.
[32] SIMULIA Company.ABAQUS Abaqus user guide and help documentation[R]. Rhode Island, USA: SIMULIA Company, 2009.
[33] LUO G, FLEMINGS P B, HUDEC M R, et al.The role of pore fluid overpressure in the substrates of advancing salt sheets, ice glaciers, and critical-state wedges[J]. Journal of Geophysical Research Solid Earth, 2015, 120(1): 87-105.
[34] 林川. 临界角库伦楔在盐下楔状体的应用: 以库车坳陷克拉苏构造带为例[J]. 高校地质学报, 2017, 23(3): 491-498.
LIN Chuan.Application of the critical taper model in the subsalt structural wedges: Example from Kelasu structure belt of Kuqa Depression[J]. Geological Journal of China Universities, 2017, 23(3): 491-498.
[35] 鞠玮, 侯贵廷, 黄少英, 等. 库车坳陷依南-吐孜地区下侏罗统阿合组砂岩构造裂缝分布预测[J]. 大地构造与成矿学, 2013, 37(4): 592-602.
JU Wei, HOU Guiting, HUANG Shaoying, et al.Structural fracture distribution and prediction of the Lower Jurassic Ahe Formation sandstone in the Yinan-Tuzi Area, Kuqa Depression[J]. Geotectonica et Metallogenia, 2013, 37(4): 592-602.
[36] 刁海燕. 泥页岩储层岩石力学特性及脆性评价[J]. 岩石学报, 2013, 29(9): 3300-3306.
DIAO Haiyan.Rock mechanical properties and brittleness evaluation of shale reservoir[J]. Acta Petrologica Sinica, 2013, 29(9): 3300-3306.
[37] 孙云强, 罗纲. 青藏高原东北缘地震时空迁移的有限元数值模拟[J]. 地球物理学报, 2018, 61(6): 76-94.
SUN Yunqiang, LUO Gang.Spatial-temporal migration of earthquakes in the northeastern Tibetan Plateau: Insights from a finite element model[J]. Chinese Journal of Geophysics, 2018, 61(6): 76-94.
[38] AL-AJMI A M, ZIMMERMAN R W. Stability analysis of vertical boreholes using the Mogi-Coulomb failure criterion[J]. International Journal of Mechanics & Mining, 2006, 43(8): 1200-1211.
[39] AL-AJMI A M, ZIMMERMAN R W. Stability analysis of deviated boreholes using the Mogi-Coulomb failure criterion, with applications to some oil and gas reservoirs[R]. SPE 104035, 2006.
[40] LUO G, NIKOLINAKOU M K, FLEMINGS P B, et al.Near-salt stress and wellbore stability: A finite-element study and its application[R]. Chicago: 46th US Rock Mechanics/Geomechanics Symposium, 2012.
[41] MAHDI H, NIKOLINAKOU M A, FLEMINGS P B.Coupling geomechanical modeling with seismic pressure prediction[J]. Geophysics, 2018, 64(5):1-54.
[42] Bradley W B.Borehole failure near salt domes[R]. SPE 7503, 1978.
[43] WHITSON C D, MCFADYEN M K.Lessons learned in the planning and drilling of deep, subsalt wells in the deepwater Gulf of Mexico[R]. SPE 71363, 2001.
[44] ROHLEDER S A, SANDERS W W, WILLIAMSON R N, et al.Challenges of drilling an ultra-deep well in deepwater-spa prospect[R]. SPE 79810, 2003.
[45] WILLSON S M, FREDRICH J T.Geomechanics considerations for through and near-salt well design[R]. SPE 95621, 2005.
[46] 何湘清, 刘向君, 罗平亚. 温度扰动对井壁稳定和油田开发的影响[J]. 天然气工业, 2003, 23(1): 39-41.
HE Xiangqing, LIU Xiangjun, LUO Pingya.Influence of temperature perturbation on borehole wall stabilization and oil field development[J]. Nature Gas Industry, 2003, 23(1): 39-41.
文章导航

/