[1] JACKSON M P A. Retrospective salt tectonics[C]//JACKSON M P A, ROBERTS D G, SNELSON S. Salt tectonic: A global perspective. Houston: AAPG Memoir 65, 1995: 1-28.
[2] EDGELL H S.Salt tectonism in the Persian Gulf Basin[J]. Geological Society London Special Publications, 1996, 100(1): 129-151.
[3] MCBRIDE B C, WEIMER P, ROWAN M G.The effect of allochthonous salt on the petroleum systems of northern Green Canyon and Ewing Bank(Offshore Louisiana), northern Gulf of Mexico[J]. AAPG Bulletin, 1998, 82(5): 1083-1112.
[4] 唐祥华. 世界含盐盆地中的油气资源[J]. 中国地质, 1990, 38(7): 27-28.
TANG Xianghua.Oil and gas resources in salt-bearing basins in the world[J]. Geology in China, 1990, 38(7): 27-28.
[5] 梁大川, 张英. 盐层的特殊性及其钻井液技术[J]. 西部探矿工程, 2004, 16(8): 74-75.
LIANG Dachuan, ZHANG Ying.The particularity of subsalt and drilling fluid techniques[J]. West-China Exploration Engineering, 2004, 16(8): 74-75.
[6] 余一欣, 周心怀, 彭文绪, 等. 盐构造研究进展述评[J]. 大地构造与成矿学, 2011, 35(2): 169-182.
YU Yixin, ZHOU Xinhuai, PENG Wenxu, et al.An overview on salt structures[J]. Geotectonica et Metallogenia, 2011, 35(2): 169-182.
[7] 张锦荣, 陈安明, 周玉仓. 塔里木深井盐膏层钻井技术[J]. 石油钻探技术, 2003, 31(6): 25-27.
ZHANG Jinrong, CHEN Anming, ZHOU Yucang.The drilling technology for penetrating carbonate formation in Tarim Deep Wells[J]. Petroleum Drilling Techniques, 2003, 31(6): 25-27.
[8] 张仲培, 王毅, 李建交, 等. 塔里木盆地巴-麦地区古生界油气盖层动态演化评价[J]. 石油与天然气地质, 2014, 35(6): 839-852.
ZHANG Zhongpei, WANG Yi, LI Jianjiao, et al.Dynamic evolution assessment of the Paleozoic hydrocarbon cap rocks in Bachu-Magati area, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 839-852.
[9] 王香增. 钻井工程中盐膏层井眼缩径的数值模拟及最佳工程设计研究[D]. 北京: 中国地质大学, 2006.
WANG Xiangzeng.Numerical modeling and optimum engineering design for hole shrinkage in borehole drilling at salt and gypsum layers[D]. Beijing: China University of Geosciences, 2006.
[10] LI S.Numerical studies of the deformation of salt bodies with embedded carbonate stringers[D]. Aachen, Germany: RWTH Aachen University, 2013.
[11] NIKOLINAKOU M A, HUDEC M R, FLEMINGS P B.Comparison of evolutionary and static modeling of stresses around a salt diaper[J]. Marine and Petroleum Geology, 2014, 57: 537-545.
[12] FREDRICH J T, COBLENTZ D, FOSSUM A F, et al.Stress perturbations adjacent to salt bodies in the deep-water Gulf of Mexico[R]. SPE 84554, 2003.
[13] KOUPRIANTCHIK D, HUNT S P, BOULT P J, et al.Geomechanical modeling of salt diapirs: Generic shapes and a 3-D salt structure from the Officer Basin, South Australia[R]. Torino, Italy: Proceedings of the 11th International Conference, 2005: 1-9.
[14] MACKAY F, INOUE N, FONTOURA S A B, et al. Geomechanical effects of a 3-D vertical salt well drilling by FEA[J]. American Rock Mechanics Association Journal, 2008, 42: 8-41.
[15] LUO G, NIKOLINAKOU M A, FLEMINGS P B, et al.Geomechanical modeling of stresses adjacent to salt bodies: Part 1-Uncoupled models[J]. AAPG Bulletin, 2012, 96(1): 43-64.
[16] NIKOLINAKOU M A, MERRELL M P, LUO G, et al, Geomechanical modeling of the Mad Dog salt, Gulf of Mexico[R]. San Francisco, Calif: American Rock Mechanics Association, 2013.
[17] 曾联波, 周天伟. 塔里木盆地库车坳陷储层裂缝分布规律[J]. 天然气工业, 2004, 24(9): 23-25.
ZENG Lianbo, ZHOU Tianwei.Reservoir fracture distribution law of kuche depression in Talimu Basin[J]. Natural Gas Industry, 2004, 24(9): 23-25.
[18] 邬光辉, 王招明, 刘玉魁, 等. 塔里木盆地库车坳陷盐构造运动学特征[J]. 地质论评, 2004, 50(5): 476-483.
WU Guanghui, WANG Zhaoming, LIU Yukui, et al.Kinematics characteristics of the Kuqa Depression in the Tarim Basin[J]. Geological Review, 2004, 50(5): 476-483.
[19] 汤良杰, 贾承造,金之钧, 等. 库车前陆褶皱冲断带中段第三系盐枕构造[J]. 地质科学, 2003, 38(3): 281-290.
TANG Liangjie, JIA Chengzao, JIN Zhijun, et al.Tertiary salt pillow structures in the central sector of the Kuqa foreland fold-and-thrust belt, Tarim Basin, northwest China[J]. Chinese Journal of Geology, 2003, 38(3): 281-290.
[20] 胡剑风, 刘玉魁, 杨明慧, 等. 塔里木盆地库车坳陷盐构造特征及其与油气的关系[J]. 地质科学, 2004, 39(4): 580-588.
HU Jianfeng, LIU Yukui, YANG Minghui, et al.Salt structure characteristics and its relation to hydrocarbon accumulation in the Kuqa Depression, Tarim Basin[J]. Chinese Journal of Geology, 2004, 39(4): 580-588.
[21] 余一欣. 库车坳陷秋里塔格构造带盐相关构造及其形成机理[D]. 北京: 中国石油大学, 2006.
YU Yixin.The salt-related structures and their formation mechanisms in the Qiulitag structural belt, Kuqa Depression[D]. Beijing: China University of Petroleum, 2006.
[22] 汪新, 王招明, 谢会文, 等. 塔里木库车坳陷新生代盐构造解析及其变形模拟[J]. 中国科学: 地球科学, 2010, 40(12): 1655-1668.
WANG Xin, WANG Zhaoming, XIE Huiwen, et al.Cenozoic salt tectonics and physical models in the Kuqa depression of Tarim Basin, China[J]. SCIENCE CHINA Earth Sciences, 2010, 40(12): 1655-1668.
[23] 汤良杰, 贾承造, 皮学军, 等. 库车前陆褶皱带盐相关构造样式[J]. 中国科学: 地球科学, 2003, 33(1): 38-46.
TANG Liangjie, JIA Chengzao, PI Xuejun, et al.Salt-related structural style of Kuqa foreland fold belt[J]. SCIENCE CHINA Earth Sciences, 2003, 33(1): 38-46.
[24] 汤良杰, 余一欣, 杨文静, 等. 库车前陆褶皱冲断带前缘滑脱层内部变形特征[J]. 中国地质, 2006, 33(5): 944-951.
TANG Liangjie, YU Yixin, YANG Wenjing, et al.Internal deformation features of detachment layers in the front of the Kuqa forland fold-thrust belt[J]. Geology in China, 2006, 33(5): 944-951.
[25] CHEN S, TANG L, JIN Z, et al.Thrust and fold tectonics and the role of evaporites in deformation in the Western Kuqa Foreland of Tarim Basin, Northwest China[J]. Marine & Petroleum Geology,2004, 21(8): 1022-1042.
[26] 张君峰, 高永进, 杨有星, 等. 塔里木盆地温宿凸起油气勘探突破及启示[J]. 石油勘探与开发, 2019, 46(1): 14-24.
ZHANG Junfeng, GAO Yongjin, YANG Youxing, et al.Oil exploration breakthrough in the Wensu salient, northwest Tarim Basin and its implications[J]. Petroleum Exploration and Development, 2019, 46(1): 14-24.
[27] 曾联波, 王贵文. 塔里木盆地库车山前构造带地应力分布特征[J]. 石油勘探与开发, 2005, 32(3): 59-60.
ZENG Lianbo, WANG Guiwen.Distribution of earth stress in Kuche thrust belt, Tarim Basin[J]. Petroleum Exploration and Development, 2005, 32(3): 59-60.
[28] 张明利. 塔里木盆地库车坳陷中新生代构造应力场分析[J]. 地球学报, 2004, 25(6): 615-619.
ZHANG Mingli.An analysis of the Mesozoic2Cenozoic Tectonic Stress Field in Kuqa Depression, Tarim Basin[J]. Acta Geoscientica Sinica, 2004, 25(6): 615-619.
[29] 佘晓宇, 龚晓星, 吕鹏, 等. 江陵凹陷八岭山—花园多层系盐和盐泥构造及其形成机制[J]. 现代地质, 2013, 27(4): 765-773.
SHE Xiaoyu, GONG Xiaoxing, LYU Peng, et al.Balingshan-Huayuan multilayer salt and salt mud tectonics in Jiangling Depression and its formation mechanism[J]. Geoscience, 2013, 27(4): 765-773.
[30] 朱志军, 郭福生. 滇西兰坪盆地金顶铅锌矿盐构造发育特征及其与成矿关系[J]. 大地构造与成矿学, 2016, 40(2): 344-353.
ZHU Zhijun, GUO Fusheng.Characteristics of salt structures and links to Pb-Zn mineralization of the Jinding Deposit in Lanping Basin, Western Yunnan[J]. Geotectonica et Metallogenia, 2016, 40(2): 344-353.
[31] ROWAN M G.Passive-margin salt basins: Hyperextension, evaporite deposition, and salt tectonics[J]. Basin Research, 2014, 26(1): 154-182.
[32] SIMULIA Company.ABAQUS Abaqus user guide and help documentation[R]. Rhode Island, USA: SIMULIA Company, 2009.
[33] LUO G, FLEMINGS P B, HUDEC M R, et al.The role of pore fluid overpressure in the substrates of advancing salt sheets, ice glaciers, and critical-state wedges[J]. Journal of Geophysical Research Solid Earth, 2015, 120(1): 87-105.
[34] 林川. 临界角库伦楔在盐下楔状体的应用: 以库车坳陷克拉苏构造带为例[J]. 高校地质学报, 2017, 23(3): 491-498.
LIN Chuan.Application of the critical taper model in the subsalt structural wedges: Example from Kelasu structure belt of Kuqa Depression[J]. Geological Journal of China Universities, 2017, 23(3): 491-498.
[35] 鞠玮, 侯贵廷, 黄少英, 等. 库车坳陷依南-吐孜地区下侏罗统阿合组砂岩构造裂缝分布预测[J]. 大地构造与成矿学, 2013, 37(4): 592-602.
JU Wei, HOU Guiting, HUANG Shaoying, et al.Structural fracture distribution and prediction of the Lower Jurassic Ahe Formation sandstone in the Yinan-Tuzi Area, Kuqa Depression[J]. Geotectonica et Metallogenia, 2013, 37(4): 592-602.
[36] 刁海燕. 泥页岩储层岩石力学特性及脆性评价[J]. 岩石学报, 2013, 29(9): 3300-3306.
DIAO Haiyan.Rock mechanical properties and brittleness evaluation of shale reservoir[J]. Acta Petrologica Sinica, 2013, 29(9): 3300-3306.
[37] 孙云强, 罗纲. 青藏高原东北缘地震时空迁移的有限元数值模拟[J]. 地球物理学报, 2018, 61(6): 76-94.
SUN Yunqiang, LUO Gang.Spatial-temporal migration of earthquakes in the northeastern Tibetan Plateau: Insights from a finite element model[J]. Chinese Journal of Geophysics, 2018, 61(6): 76-94.
[38] AL-AJMI A M, ZIMMERMAN R W. Stability analysis of vertical boreholes using the Mogi-Coulomb failure criterion[J]. International Journal of Mechanics & Mining, 2006, 43(8): 1200-1211.
[39] AL-AJMI A M, ZIMMERMAN R W. Stability analysis of deviated boreholes using the Mogi-Coulomb failure criterion, with applications to some oil and gas reservoirs[R]. SPE 104035, 2006.
[40] LUO G, NIKOLINAKOU M K, FLEMINGS P B, et al.Near-salt stress and wellbore stability: A finite-element study and its application[R]. Chicago: 46th US Rock Mechanics/Geomechanics Symposium, 2012.
[41] MAHDI H, NIKOLINAKOU M A, FLEMINGS P B.Coupling geomechanical modeling with seismic pressure prediction[J]. Geophysics, 2018, 64(5):1-54.
[42] Bradley W B.Borehole failure near salt domes[R]. SPE 7503, 1978.
[43] WHITSON C D, MCFADYEN M K.Lessons learned in the planning and drilling of deep, subsalt wells in the deepwater Gulf of Mexico[R]. SPE 71363, 2001.
[44] ROHLEDER S A, SANDERS W W, WILLIAMSON R N, et al.Challenges of drilling an ultra-deep well in deepwater-spa prospect[R]. SPE 79810, 2003.
[45] WILLSON S M, FREDRICH J T.Geomechanics considerations for through and near-salt well design[R]. SPE 95621, 2005.
[46] 何湘清, 刘向君, 罗平亚. 温度扰动对井壁稳定和油田开发的影响[J]. 天然气工业, 2003, 23(1): 39-41.
HE Xiangqing, LIU Xiangjun, LUO Pingya.Influence of temperature perturbation on borehole wall stabilization and oil field development[J]. Nature Gas Industry, 2003, 23(1): 39-41.