油气勘探

济阳坳陷古近系页岩油富集规律认识与勘探实践

  • 宋明水 ,
  • 刘惠民 ,
  • 王勇 ,
  • 刘雅利
展开
  • 1. 中国石化胜利油田分公司,山东东营257000;
    2. 中国石化胜利油田分公司勘探开发研究院,山东东营257015
宋明水(1964-),男,山东沾化人,博士,中国石化胜利油田分公司教授级高级工程师,主要从事勘探部署研究与勘探管理工作。地址:山东省东营市济南路258号,中国石化胜利油田分公司,邮政编码:257000。E-mail: songmingshui@sinopec.com

收稿日期: 2019-07-12

  修回日期: 2020-01-15

  网络出版日期: 2020-03-21

基金资助

国家重点基础研究发展规划(973)项目(2014CB239100); 国家专项(2017ZX05049)

Enrichment rules and exploration practices of Paleogene shale oil in Jiyang Depression, Bohai Bay Basin, China

  • SONG Mingshui ,
  • LIU Huimin ,
  • WANG Yong ,
  • LIU Yali
Expand
  • 1. Sinopec Shengli Oilfield Company, Dongying 257000, China;
    2. Exploration and Development Institute of Shengli Oilfield Company, Sinopec, Dongying 257015, China

Received date: 2019-07-12

  Revised date: 2020-01-15

  Online published: 2020-03-21

摘要

基于40余口页岩油工业油流井的测试数据和4口取心井累计1 010.26 m系统岩心观察以及上万块次样品测试数据,通过多井次页岩油井钻探和老井压裂先导试验,分析济阳坳陷古近系沙河街组四段上亚段—沙河街组三段下亚段页岩基本特征,明确页岩油富集要素,建立页岩油富集模式,形成页岩油甜点综合评价方法。认为目的层段页岩具有非均质性强、成岩弱、热演化程度低、黏土和碳酸盐矿物含量高等特征;页岩岩相、微裂缝、薄夹层和异常压力是页岩油富集稳产的主控因素,富有机质纹层状岩相储集性、含油性最优,微裂缝网络体系改善了页岩储集性和渗流能力,薄夹层为页岩油稳定产出主要渗流通道,异常高压发育段游离态页岩油富集、含油性好;将目的层段页岩油划分为基质型、夹层型和裂缝型3类,依据页岩油赋存特征,结合国内外页岩油勘探实际,认为夹层型页岩油是目前最具有勘探效益的类型;界定不同类型页岩油选区参数标准,多因素综合评价页岩油有利区。夹层型页岩油井F159、F143、GX26等直井采用"体积压裂"+"高导流通道压裂"组合缝网套管压裂工艺,改造后日产油6 t以上,最高可达日产44 t,产能稳定,页岩油有望成为济阳坳陷油气勘探的重要接替阵地。图8表4参24

本文引用格式

宋明水 , 刘惠民 , 王勇 , 刘雅利 . 济阳坳陷古近系页岩油富集规律认识与勘探实践[J]. 石油勘探与开发, 2020 , 47(2) : 225 -235 . DOI: 10.11698/PED.2020.02.02

Abstract

Based on formation testing data of more than 40 wells with industrial oil flow, systematic observation of 1 010.26 m long cores taken from 4 wells and test data of over 10 000 core samples combining with drilling and pilot fracturing data of multiple wells, the geological characteristics of the upper submember of the Sha 4 Member to the lower submember of the Sha 3 Member of Paleogene (Es4s-Es3x) in Jiyang Depression were investigated to find out factors controlling the enrichment of shale oil and the accumulation model of shale oil, and a comprehensive evaluation method for shale oil sweet spots was established. It is found through the study that the target shale layer is characterized by strong heterogeneity, weak diagenesis, low thermal evolution and high content of clay and carbonate minerals. Shale lithofacies, microcrack, thin interlayer and abnormal pressure are the main factors affecting enrichment and stable production of shale oil, the organic rich laminar shale has the best storage and oil-bearing capacity, microcrack network system improve the storage capacity and permeability of the shale, the thin interlayer is the main flow channel for stable shale oil production, and the abnormal high pressure layer is rich in free state shale oil and high in oil content. The shale oil layers in the target section were divided into three types: matrix, interlayer and fracture ones. According to the occurrence state and exploration practice of shale oil at home and abroad, it is concluded that the interlayer shale oil is the most profitable type at present. The selection parameters for the different types of shale oil were determined, and accordingly the favorable areas were pointed out by comprehensive evaluation of multiple factors. Vertical wells in the interlayer shale oil reservoir, such as Fan 159, Fan 143 and GX 26, were stimulated by volume fracturing and high conductivity channel fracturing jointly. After fracturing, they had a daily oil production of over 6 t, up to 44 t, and stable productivity. Shale oil is expected to become an important replacement energy resource in Jiyang Depression.

参考文献

[1] 邹才能, 陶士振, 侯连华, 等. 非常规油气地质学[M]. 北京: 地质出版社, 2014.
ZOU Caineng, TAO Shizhen, HOU Lianhua, et al.Unconventional petroleum geology[M]. Beijing: Geological Publishing House, 2014.
[2] 傅成玉. 非常规油气资源勘探开发[M]. 北京: 中国石化出版社, 2015.
FU Chengyu.Exploration and development of unconventional petroleum resources[M]. Beijing: China Petrochemical Press, 2015.
[3] 张金川, 林腊梅, 李玉喜, 等. 页岩油分类与评价[J]. 地学前缘, 2012, 19(5): 322-331.
ZHANG Jinchuan, LIN Lamei, LI Yuxi, et al.Classification and evaluation of shale oil[J]. Earth Science Frontiers, 2012, 19(5): 322-331.
[4] 赵贤正, 周立宏, 蒲秀刚, 等. 陆相湖盆页岩层系基本地质特征与页岩油勘探突破: 以渤海湾盆地沧东凹陷古近系孔店组二段一亚段为例[J]. 石油勘探与开发, 2018, 45(3): 361-372.
ZHAO Xianzheng, ZHOU Lihong, PU Xiugang, et al.Geological characteristics of shale rock system and shale oil exploration breakthrough in a lacustrine basin: A case study from the Paleogene 1st sub-member of Kong 2 Member in Cangdong Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2018, 45(3): 361-372.
[5] 柳波, 吕延防, 孟元林, 等. 湖相纹层状细粒岩特征、成因模式及其页岩油意义: 以三塘湖盆地马朗凹陷二叠系芦草沟组为例[J]. 石油勘探与开发, 2015, 42(5): 598-607.
LIU Bo, LYU Yanfang, MENG Yuanlin, et al.Petrologic characteristics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration: A case study of Permian Lucaogou Formation in Malang Sag, Santanghu Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(5): 598-607.
[6] 王文广, 林承焰, 郑民, 等. 致密油/页岩油富集模式及资源潜力: 以黄骅坳陷沧东凹陷孔二段为例[J]. 中国矿业大学学报, 2018, 47(2): 332-344.
WANG Wenguang, LIN Chengyan, ZHENG Min, et al.Enrichment patterns and resource prospects of tight oil and shale oil: A case study of the second member of Kondian formation in the Cangdong Sag, Huanghua Depression[J]. Journal of China University of Mining &Technology, 2018, 47(2): 332-344.
[7] 宋明水. 济阳坳陷页岩油勘探实践与现状[J]. 油气地质与采收率, 2019, 26(1): 1-12.
SONG Mingshui.Practice and current status of shale oil exploration in Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 1-12.
[8] 高辉, 何梦卿, 赵鹏云, 等. 鄂尔多斯盆地长7页岩油与北美地区典型页岩油地质特征对比[J]. 石油实验地质, 2018, 40(2): 133-140.
GAO Hui, HE Mengqing, ZHAO Pengyun, et al.Comparison of geological characteristics of Chang 7 shale oil in Ordos Basin and typical shale oil in North America[J]. Petroleum Geology and Experiment, 2018, 40(2): 133-140.
[9] 龙玉梅, 陈曼霏, 陈风玲, 等. 潜江凹陷潜江组盐间页岩油储层发育特征及影响因素[J]. 油气地质与采收率, 2019, 26(1): 59-64.
LONG Yumei, CHEN Manfei, CHEN Fengling, et al.Characteristics and influencing factors of inter-salt shale oil reservoirs in Qianjiang Formation, Qianjiang Sag[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 59-64.
[10] 章新文, 王优先, 王根林, 等. 河南省南襄盆地泌阳凹陷古近系核桃园组湖相页岩油储集层特征[J]. 古地理学报, 2015, 17(1): 107-118.
ZHANG Xinwen, WANG Youxian, WANG Genlin, et al.Reservoir characteristics of lacustrine shale oil of the Paleogene Hetaoyuan Formation in Biyang Sag of Nanxiang Basin, Henan Province[J]. Journal of Palaeogeography, 2015, 17(1): 107-118.
[11] 张林晔, 包友书, 李钜源, 等. 湖相页岩油可动性: 以渤海湾盆地济阳坳陷东营凹陷为例[J]. 石油勘探与开发, 2014, 41(6): 641-650.
ZHANG Linye, BAO Youshu, LI Juyuan, et al.Movability of lacustrine shale oil: A case study of Dongying Sag, Jiyang Depression, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2014, 41(6): 641-650.
[12] 张林晔, 李钜源, 李政, 等. 陆相盆地页岩油气地质研究与实践[M]. 北京: 石油工业出版社, 2017: 146-154.
ZHANG Linye, LI Juyuan, LI Zheng, et al.Geological research and practice of shale oil and gas in continental basin[M]. Beijing: Petroleum Industry Press, 2017: 146-154.
[13] 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26.
ZOU Caineng, YANG Zhi, CUI Jingwei, et al.Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26.
[14] 孙焕泉. 济阳坳陷页岩油勘探实践与认识[J]. 中国石油勘探, 2017, 22(4): 1-14.
SUN Huanquan.Exploration practice and cognitions of shale oil in Jiyang depression[J]. China Petroleum Exploration, 2017, 22(4): 1-14.
[15] 王勇, 王学军, 宋国奇, 等. 渤海湾盆地济阳坳陷页岩岩相与页岩油富集关系[J]. 石油勘探与开发, 2016, 43(5): 696-704.
WANG Yong, WANG Xuejun, SONG Guoqi, et al.Genetic connection between mud shale lithofacies and shale oil enrichment in Jiyang Depression, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(5): 696-704.
[16] 袁选俊, 林森虎, 刘群, 等. 湖盆细粒沉积特征与富有机质页岩分布模式: 以鄂尔多斯盆地延长组长7油层组为例[J]. 石油勘探与开发, 2015, 41(1): 34-43.
YUAN Xuanjun, LIN Senhu, LIU Qun, et al.Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 41(1): 34-43.
[17] 蒋启贵, 黎茂稳, 钱门辉, 等. 页岩油探井现场地质评价实验流程与技术进展[J]. 石油与天然气地质, 2019, 40(3): 571-582.
JIANG Qigui, LI Maowen, QIAN Menhui, et al.Experimental procedures of well-site geological evaluation for shale oil and related technological progress[J]. Oil & Gas Geology, 2019, 40(3): 571-582.
[18] 王勇, 刘惠民, 宋国奇, 等. 济阳坳陷页岩油富集要素与富集模式研究[J]. 高校地质学报, 2017, 23(2): 268-276.
WANG Yong, LIU Huimin, SONG Guoqi, et al.Enrichment controls and models of shale oil in the Jiyang Depression, Bohai Bay Basin[J]. Geological Journal of China Universities, 2017, 23(2): 268-276.
[19] 纪文明, 宋岩, 姜振学, 等. 四川盆地东南部龙马溪组页岩微-纳米孔隙结构特征及控制因素[J]. 石油学报, 2016, 37(2): 182-195.
JI Wenming, SONG Yan, JIANG Zhenxue, et al.Micro-nanopore structure characteristics and its control factors of shale in Longmaxi Formation, southeastern Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(2): 182-195.
[20] 刘伟新, 鲍芳, 俞凌杰, 等. 川东南志留系龙马溪组页岩储层微孔隙结构及连通性研究[J]. 石油实验地质, 2016, 38(4): 453-459.
LIU Weixin, BAO Fang, YU Lingjie, et al.Micro-pore structure and connectivity of the Silurian Longmaxi shales, southeastern Sichuan area[J]. Petroleum Geology & Experiment, 2016, 38(4): 453-459.
[21] POLLASTRO R M.Total petroleum system assessment of undiscovered resources in the giant Barnett Shale continuous (unconventional) gas accumulation, Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 551-578.
[22] GAMA D, RUI O B, LUTZ B, et al.Integrated paleoenvironmental analysis of the Niobrara Formation: Cretaceous Western Interior Seaway, northern Colorado[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 413: 66-80.
[23] BURNS S J, BAKER P A.A geochemical study of dolomite in the Monterey Formation, California[J]. Journal of Sedimentary Research, 2006, 57(1): 128-139.
[24] 王永诗, 李政, 巩建强, 等. 济阳坳陷页岩油气评价方法: 以沾化凹陷罗家地区为例[J]. 石油学报, 2013, 34(1): 83-91.
WANG Yongshi, LI Zheng, GONG Jianqiang, et al.Discuss on evaluation methods of shale oil and gas in Jiyang Depression: A case from Luojia area in Zhanhua Sag[J]. Acta Petrolei Sinica, 2013, 34(1): 83-91.
文章导航

/