油气勘探

塔里木盆地塔中隆起断控复式油气聚集的差异性及主控因素

  • 江同文 ,
  • 韩剑发 ,
  • 邬光辉 ,
  • 于红枫 ,
  • 苏洲 ,
  • 熊昶 ,
  • 陈军 ,
  • 张慧芳
展开
  • 1. 中国石油塔里木油田公司,新疆库尔勒 841000;
    2. 西南石油大学,成都 610500
江同文(1968-),男,四川三台人,博士,中国石油塔里木油田公司教授级高级工程师,主要从事油气田开发研究与管理工作。地址:新疆库尔勒市石化大道26号,中国石油塔里木油田公司,邮政编码:841000。E-mail: jangtw-tlm@petrochina.com.cn

收稿日期: 2019-04-08

  修回日期: 2019-12-30

  网络出版日期: 2020-03-21

基金资助

中国科学院战略性先导科技专项(XDA14010302); 国家科技重大专项(2017ZX05008-004-001,2017ZX05001-001)

Differences and controlling factors of composite hydrocarbon accumulations in the Tazhong uplift, Tarim Basin, NW China

  • JIANG Tongwen ,
  • HAN Jianfa ,
  • WU Guanghui ,
  • YU Hongfeng ,
  • SU Zhou ,
  • XIONG Chang ,
  • CHEN Jun ,
  • ZHANG Huifang
Expand
  • 1. PetroChina Tarim Oilfield Company, Korla 841000, China;
    2. Southwest Petroleum University, Chengdu 610500, China

Received date: 2019-04-08

  Revised date: 2019-12-30

  Online published: 2020-03-21

摘要

基于三维地震精细解释、构造与沉积特征剖析、流体性质及生产动态研究,探讨塔里木盆地塔中隆起油气成藏规律及主控因素。研究结果表明,塔中隆起油气具有以断裂为主控因素的复式成藏特征,80%以上油气储量沿断裂带富集;塔中隆起发育大型逆冲及走滑断裂,断裂形成演化与成藏耦合关系决定了复式油气聚集的差异性,断裂活动规模与期次决定了圈闭的充满程度与相态平衡,即输导体系的不畅通、油气充注的不充分、流体聚集的非平衡等受控于断裂,多期构造沉积演化控制了断裂带圈闭条件的差异性,多期油气运聚成藏控制了断裂带流体分布的差异性。断控复式油气差异性聚集理论是塔中隆起整体评价、立体开发与增储上产的关键。图6表2参49

本文引用格式

江同文 , 韩剑发 , 邬光辉 , 于红枫 , 苏洲 , 熊昶 , 陈军 , 张慧芳 . 塔里木盆地塔中隆起断控复式油气聚集的差异性及主控因素[J]. 石油勘探与开发, 2020 , 47(2) : 213 -224 . DOI: 10.11698/PED.2020.02.01

Abstract

Based on three-dimensional seismic interpretation, structural and sedimentary feature analysis, and examination of fluid properties and production dynamics, the regularity and main controlling factors of hydrocarbon accumulation in the Tazhong uplift, Tarim Basin are investigated. The results show that the oil and gas in the Tazhong uplift has the characteristics of complex accumulation mainly controlled by faults, and more than 80% of the oil and gas reserves are enriched along fault zones. There are large thrust and strike-slip faults in the Tazhong uplift, and the coupling relationship between the formation and evolution of the faults and accumulation determine the difference in complex oil and gas accumulations. The active scale and stage of faults determine the fullness of the traps and the balance of the phase, that is, the blocking of the transport system, the insufficient filling of oil and gas, and the unsteady state of fluid accumulation are dependent on the faults. The multi-period tectonic sedimentary evolution controls the differences of trap conditions in the fault zones, and the multi-phase hydrocarbon migration and accumulation causes the differences of fluid distribution in the fault zones. The theory of differential oil and gas accumulation controlled by fault is the key to the overall evaluation, three-dimensional development and discovery of new reserves in the Tazhong uplift.

参考文献

[1] BEN-ZION Y, MALIN P.San Andreas fault zone head waves near Parkfield, California[J]. Science, 1991, 251(5001): 1592-1594.
[2] DI T G, HAN R, HIROSE T, et al.Fault lubrication during earthquake[J]. Nature, 2001, 471(7339): 494-498.
[3] WANG K.Finding fault in fault zones[J]. Science, 2010, 329(5988): 152-153.
[4] CAINE J S, EVANS J P, FORSTER C B.Fault zone architecture and permeability structure[J]. Geology, 1996, 24(11): 1025-1028.
[5] FAULKNER D R, JACKSON C A, LUNN R J, et al.A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones[J]. Journal of Structural Geology, 2010, 32(11): 1557-1575.
[6] BENSE V F, GLEESON T, LOVELESS S E, et al.Fault zone hydrogeology[J]. Earth-Science Reviews, 2013, 127: 171-192.
[7] PEI Y, PATON D A, KNIPE R J, et al.A review of fault sealing behavior and its evaluation in siliciclastic rocks[J]. Earth-Science Reviews, 2015, 150: 121-138.
[8] AYDIN A.Fractures, faults and hydrocarbon entrapment, migration and flow[J]. Marine and Petroleum Geology, 2000, 17(7): 797-814.
[9] MATONTI C, LAMARCHE J, GUGLIELMI Y, et al.Structural and petrophysical characterization of mixed conduit/seal fault zones in carbonates: Example from the Castellas fault (SE France)[J]. Journal of Structural Geology, 2012, 39(2): 103-121.
[10] PANZA E, SESSA E, AGOSTA F, et al.Discrete fracture network modelling of a hydrocarbon-bearing, oblique-slip fault zone: Inferences on fault-controlled fluid storage and migration properties of carbonate fault damage zones[J]. Marine and Petroleum Geology, 2018, 89(3): 263-279.
[11] LI D S.Geological evolution of petroliferous basins on continental shelf of China[J]. AAPG Bulletin, 1984, 68(8): 993-1103.
[12] 胡见义, 徐树宝, 童晓光. 渤海湾盆地复式油气聚集区(带)的形成和分布[J]. 石油勘探与开发, 1986, 13(1): 1-8.
HU Jianyi, XU Shubao, TONG Xiaoguang.Formation and distribution of complex petroleum accumulation zones in Bohaiwan Basin[J]. Petroleum Exploration and Development, 1986, 13(1): 1-8.
[13] 孙龙德, 李曰俊. 塔里木盆地轮南低凸起: 一个复式油气聚集区[J]. 地质科学, 2004, 39(2): 296-304.
SUN Longde, LI Yuejun.Lunnan Lower Uplift: A multiple oil/gas accumulation play in the Tarim Basin, NW China[J]. Chinese Journal of Geology, 2004, 39(2): 296-304.
[14] 曹忠辉. 鄂尔多斯盆地大牛地复式气田基本地质特征[J]. 西南石油学院学报, 2005, 27(2): 17-21.
CAO Zhonghui.Basic geology characteristics of Daniudi composite gas field in Ordos Basin[J]. Journal of Southwest Petroleum Institute, 2005, 27(2): 17-21.
[15] 孙龙德, 李曰俊, 江同文, 等. 塔里木盆地塔中低凸起: 一个典型的复式油气聚集区[J]. 地质科学, 2007, 42(3): 602-620.
SUN Longde, LI Yuejun, JIANG Tongwen, et al.The central Tarim Lower Uplift: A composite hydrocarbon accumulation play in the Tarim Basin, NW China[J]. Chinese Journal of Geology, 2007, 42(3): 602-620.
[16] 杨津, 刘迪, 吴红华, 等. 中国西北部含油气盆地的构造带类型及其复式油气藏(田)初探[J]. 海相油气地质, 2012, 17(1): 1-9.
YANG Jin, LIU Di, WU Honghua, et al.Structural belt styles and multiple oil and gas reservoirs/fields in petroliferous basins, Northwestern China[J]. Marine Origin Petroleum Geology, 2012, 17(1): 1-9.
[17] 谭吕, 王力群. 古生界复式油气聚集特征及形成条件[J]. 天然气地球科学, 2013, 24(2): 300-309.
TAN Lv, WANG Liqun.Hydrocarbon accumulation characteristics and the formation mechanism of Palaeozoic reservoir in Tazhong area[J]. Natural Gas Geoscience, 2013, 24(2): 300-309.
[18] 孙龙德, 江同文, 徐汉林, 等. 塔里木盆地哈得逊油田非稳态油藏[J]. 石油勘探与开发, 2009, 36(1): 62-67.
SUN Longde, JIANG Tongwen, XU Hanlin, et al.Unsteady reservoir in Hadson Oilfield, Tarim Basin[J]. Petroleum Exploration and Development, 2009, 36(1): 62-67.
[19] 何登发, 李德生, 童晓光. 中国多旋回叠合盆地立体勘探论[J]. 石油学报, 2010, 31(5): 695-709.
HE Dengfa, LI Desheng, TONG Xiaoguang.Stereoscopic exploration model for multi-cycle superimposed basins in China[J]. Acta Petrolei Sinica, 2010, 31(5): 695-709.
[20] 邬光辉, 庞雄奇, 李启明, 等. 克拉通碳酸盐岩构造与油气: 以塔里木盆地为例[M]. 北京: 科学出版社, 2016.
WU Guanghui, PANG Xiongqi, LI Qiming, et al.Structural characteristics in cratonic carbonate rocks and its implication for oil/gas accumulation: A case study in the Tarim Basin, China[M]. Beijing: Chinese Science Press, 2016.
[21] 贾承造, 邹才能, 杨智, 等. 陆相油气地质理论在中国中西部盆地的重大进展[J]. 石油勘探与开发, 2018, 45(4): 546-560.
JIA Chengzao, ZOU Caineng, YANG Zhi, et al.Significant progress of continental petroleum geology theory in basins of Central and Western China[J]. Petroleum Exploration and Development, 2018, 45(4): 546-560.
[22] 金之钧. 中国海相碳酸盐岩层系油气勘探特殊性问题[J]. 地学前缘, 2005, 12(3): 15-22.
JIN Zhijun.Particularity of petroleum exploration on marine carbonate strata in China sedimentary basins[J]. Earth Science Froniters, 2005, 12(3): 15-22.
[23] PANG X Q, TIAN J, PANG H, et al.Main progress and problems in research on Ordovician hydrocarbon accumulation in the Tarim Basin[J]. Petroleum Science, 2010, 7: 147-163.
[24] 朱光有, 张水昌, 张斌, 等. 中国中西部地区海相碳酸盐岩油气藏类型与成藏模式[J]. 石油学报, 2010, 31(6): 871-878.
ZHU Guangyou, ZHANG Shuichang, ZHANG Bin, et al.Reservoir types of marine carbonates and their accumulation model in western and central China[J]. Acta Petrolei Sinica, 2010, 31(6): 871-878.
[25] 杜金虎, 周新源, 李启明, 等. 塔里木盆地碳酸盐岩大油气区特征与主控因素[J]. 石油勘探与开发, 2011, 38(6): 652-661.
DU Jinhu, ZHOU Xinyuan, LI Qiming, et al.Characteristics and controlling factors of the large carbonate petroleum province in the Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2011, 38(6): 652-661.
[26] 赵文智, 沈安江, 胡素云, 等. 中国碳酸盐岩储集层大型化发育的地质条件与分布特征[J]. 石油勘探与开发, 2012, 39(1): 1-12.
ZHAO Wenzhi, SHEN Anjiang, HU Suyun, et al.Geological conditions and distributional features of large-scale carbonate reservoirs onshore China[J]. Petroleum Exploration and Development, 2012, 39(1): 1-12.
[27] 刘树根, 孙玮, 李智武, 等. 四川叠合盆地海相碳酸盐岩油气分布特征及其构造主控因素[J]. 岩性油气藏, 2016, 28(5): 1-17.
LIU Shugen, SUN Wei, LI Zhiwu, et al.Distribution characteristics of marine carbonate reservoirs and their tectonic controlling factors across the Sichuan superimposed basin[J]. Lithologic Reservoirs, 2016, 28(5): 1-17.
[28] 魏新善, 陈洪德, 张道锋, 等. 致密碳酸盐岩储集层特征与天然气勘探潜力: 以鄂尔多斯盆地伊陕斜坡东部奥陶系马家沟组为例[J]. 石油勘探与开发, 2017, 44(3): 319-329.
WEI Xinshan, CHEN Hongde, ZHANG Daofeng, et al.Gas exploration potential of tight carbonate reservoirs: A case study of Ordovician Majiagou Formation in the eastern Yi-Shan slope, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(3): 319-329.
[29] 贾承造. 中国塔里木盆地构造特征与油气[M]. 北京: 石油工业出版社, 1997.
JIA Chengzao.Tectonic characteristics and petroleum, Tarim Basin, China[M]. Beijing: Petroleum Industry Press, 1997.
[30] 韩剑发, 王招明, 潘文庆, 等. 轮南古隆起控油理论及其潜山准层状油气藏勘探[J]. 石油勘探与开发, 2006, 33(4): 448-453.
HAN Jianfa, WANG Zhaoming, PAN Wenqing, et al.Petroleum controlling theory of Lunnan paleohigh and its buried hill pool exploration technology, Tarim Basin[J]. Petroleum Exploration and Development, 2006, 33(4): 448-453.
[31] 韩剑发, 张海祖, 于红枫, 等. 塔中隆起海相碳酸盐岩大型凝析气田成藏特征与勘探[J]. 岩石学报, 2012, 28(3): 769-782.
HAN Jianfa, ZHANG Haizu, YU Hongfeng, et al.Hydrocarbon accumulation characteristic and exploration on large marine carbonate condensate field in Tazhong Uplift[J]. Acta Petrologica Sinica, 2012, 28(3): 769-782.
[32] 王招明, 谢会文, 陈永权, 等. 塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J]. 中国石油勘探, 2014, 19(2): 1-13.
WANG Zhaoming, XIE Huiwen, CHEN Yongquan, et al.Discovery and exploration of Cambrian subsalt dolomite original hydrocarbon reservoir at Zhongshen-1 well in Tarim Basin[J]. China Petroleum Exploration, 2014, 19(2): 1-13.
[33] 罗春树, 杨海军, 李江海, 等. 塔中奥陶系优质储集层特征及断裂控制作用[J]. 石油勘探与开发, 2011, 38(6): 716-724.
LUO Chunshu, YANG Haijun, LI Jianghai, et al.Characteristics of high quality Ordovician reservoirs and controlling effects of faults in the Tazhong area, Tarim Basin[J]. Petroleum Exploration and Development, 2011, 38(6): 716-724.
[34] 邬光辉, 杨海军, 屈泰来, 等. 塔里木盆地塔中隆起断裂系统特征及其对海相碳酸盐岩油气的控制作用[J]. 岩石学报, 2012, 28(3): 793-805.
WU Guanghui, YANG Haijun, QU Tailai, et al.The fault system characteristics and its controlling roles on marine carbonate hydrocarbon in the Central uplift, Tarim Basin[J]. Acta Petrologica Sinica, 2012, 28(3): 793-805.
[35] WU G H, YANG H J, HE S, et al.Effects of structural segmentation and faulting on carbonate reservoir properties: A case study from the Central Uplift of the Tarim Basin, China[J]. Marine and Petroleum Geology, 2016, 71: 183-197.
[36] 能源, 杨海军. 塔中古隆起碳酸盐岩断裂破碎带构造样式及其石油地质意义[J]. 石油勘探与开发, 2017, 45(1): 40-127.
NENG Yuan, YANG Haijun.Structural patterns of fault broken zones in carbonate rocks and their influences on petroleum accumulation in Tazhong Paleo-uplift, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2017, 45(1): 40-127.
[37] LI C X, WANG X F, LI B L, et al.Paleozoic fault systems of the Tazhong Uplift, Tarim Basin[J]. Marine and Petroleum Geology, 2013, 39: 48-58.
[38] LAN X D, LYU X X, ZHU Y M, et al.The geometry and origin of strike-slip faults cutting the Tazhong low rise megaanticline (central uplift, Tarim Basin, China) and their control on hydrocarbon distribution in carbonate reservoirs[J]. Journal of Natural Gas Science and Engineering, 2015, 22: 633-645.
[39] LIU L F, WANG P, LI Y, et al.Paleozoic reservoir beds and their favorableness in Tazhong Areas of Tarim Basin, Northwest China[J]. Journal of Petroleum Science and Engineering, 2009, 68(1/2): 1-18.
[40] 杨海军, 邬光辉, 孙丽霞, 等. 塔中北斜坡志留系岩性油藏形成条件与勘探方向[J]. 新疆石油地质, 2007, 28(3): 286-288.
YANG Haijun, WU Guanghui, SUN Lixia, et al.Condition and explorative direction of lithologic reservoir of Silurian in northern slope of Tazhong uplift[J]. Xinjiang Petroleum Geology, 2007, 28(3): 286-288.
[41] 赵文智, 沈安江, 胡素云, 等. 中国碳酸盐岩储集层大型化发育的地质条件与分布特征[J]. 石油勘探与开发, 2012, 39(1): 1-12.
ZHAO Wenzhi, SHEN Anjiang, HU Suyun, et al.Geological conditions and distributional features of large-scale carbonate reservoirs onshore China[J]. Petroleum Exploration and Development, 2012, 39(1): 1-12.
[42] ZHANG H, CAI Z X, QI L X, et al.Diagenesis and origin of porosity formation of Upper Ordovician carbonate reservoir in northwestern Tazhong condensate field[J]. Journal of Natural Gas Science and Engineering, 2017, 38: 139-158.
[43] ZHANG Y F, TAN F, SUN Y B, et al.Differences between reservoirs in the intra-platform and platform margin reef-shoal complexes of the Upper Ordovician Lianglitag Formation in the Tazhong oil field, NW China, and corresponding exploration strategies[J]. Marine and Petroleum Geology, 2018, 98: 66-78.
[44] 屈海洲, 刘茂瑶, 张云峰, 等. 塔中地区鹰山组古岩溶潜水面及控储模式[J]. 石油勘探与开发, 2018, 45(5): 873-883.
QU Haizhou, LIU Maoyao, ZHANG Yunfeng, et al.Paleokarstic water tables and their control on reservoirs in Ordovician Yingshan Formation, Tazhong Area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(5): 873-883.
[45] 吴悠, 陈红汉, 赵玉涛, 等. 塔中隆起北坡志留系晚期油气充注证据及控制因素[J]. 石油与天然气地质, 2017, 38(2): 292-301.
WU You, CHEN Honghan, ZHAO Yutao, et al.Evidence and controlling factors of hydrocarbon charging in the Late Silurian in the north slope of the Tazhong Uplift, Tarim Basin[J]. Oil & Gas Geology, 2017, 38(2): 292-301.
[46] CAI C F, ZHANG C M, WORDEN R H, et al. Application of sulfur and carbon isotopes to oil-source rock correlation: A case study from the Tazhong area, Tarim Basin, China[J]. Organic Geochemistry, 2015, 83/84: 140-152.
[47] ZHU G Y, CHEN F R, WANG M, et al.Discovery of the Lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim Basin, China[J]. AAPG Bulletin, 2018, 102(10): 2123-2151.
[48] PANG H, CHEN J Q, PANG X Q, et al.Key factors controlling hydrocarbon accumulations in Ordovician carbonate reservoirs in the Tazhong area, Tarim Basin, western China[J]. Marine and Petroleum Geology, 2013, 43: 88-101.
[49] ZHU G Y, ZHANG B T, YANG H J, et al.Origin of deep strata gas of Tazhong in Tarim Basin, China[J]. Organic Geochemistry, 2014, 74: 85-97.
文章导航

/