新能源新领域

四川盆地五峰组—龙马溪组深水陆棚相页岩生储机理探讨

  • 郭旭升 ,
  • 李宇平 ,
  • 腾格尔 ,
  • 王强 ,
  • 袁桃 ,
  • 申宝剑 ,
  • 马中良 ,
  • 魏富彬
展开
  • 1. 中国石化勘探分公司,成都 610041;
    2. 中国石化石油勘探开发研究院无锡石油地质研究所,江苏无锡 214126
郭旭升(1965-),男,山东茌平人,博士,中国石化勘探分公司教授级高级工程师,主要从事石油地质综合研究及勘探工作。地址:四川省成都市高新区吉泰路688号,邮政编码:610041。E-mail: guoxs.ktnf@sinopec.com

收稿日期: 2019-05-17

  网络出版日期: 2020-01-17

基金资助

国家科技重大专项“页岩气区带目标评价与勘探技术”(2017ZX05036); “重点地区页岩气富集规律与勘探评价方法”(2017ZX05036001)

Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan Basin, China

  • GUO Xusheng ,
  • LI Yuping ,
  • BORJIGEN Tenger ,
  • WANG Qiang ,
  • YUAN Tao ,
  • SHEN Baojian ,
  • MA Zhongliang ,
  • WEI Fubin
Expand
  • 1. Exploration Company, Sinopec, Chengdu 610041, China;
    2. Wuxi Petroleum Geology Institute, Research Institute of Petroleum Exploration and Development, Sinopec, Wuxi 214126, China

Received date: 2019-05-17

  Online published: 2020-01-17

摘要

针对上奥陶统五峰组—下志留统龙马溪组优质页岩生储机理不清的问题,以四川盆地五峰组—龙马溪组深水陆棚相优质页岩为研究对象,结合页岩气形成地质条件和实验分析模拟,从岩石学、矿物学、地球化学等多方面对页岩成烃、成储机制及内在耦合关系等进行分析。结果表明,四川盆地五峰组—龙马溪组优质页岩热演化程度高、生烃强度大、物质基础好,具有良好的顶底板条件;深水陆棚相优质页岩不仅具有高生物成因硅、高有机碳含量,而且具有相对高孔隙度耦合特征。研究认为:①四川盆地五峰组—龙马溪组高演化深水陆棚相优质页岩保存条件好,早期原油滞留效率高,其气源主要来自原油滞留裂解气。②深水陆棚相生物成因的硅质(蛋白石A),在埋藏成岩早期转化成高硬度晶态石英,伴生形成大量微米级粒间孔,而生物成因的硅质格架抗压性强,为优质页岩储集层早期原油充注及纳米级蜂窝状有机孔的发育和保持提供了空间和保护,是有机孔得以保存的关键因素。③五峰组—龙马溪组优质页岩脆性好,均质性强,微米级硅质粒间孔与纳米级有机孔共生,是压裂形成复杂缝网、硅质粒间纳米级有机孔实现高效连通的关键,有利于页岩气高产、稳产。图12表2参28

本文引用格式

郭旭升 , 李宇平 , 腾格尔 , 王强 , 袁桃 , 申宝剑 , 马中良 , 魏富彬 . 四川盆地五峰组—龙马溪组深水陆棚相页岩生储机理探讨[J]. 石油勘探与开发, 2020 , 47(1) : 193 -201 . DOI: 10.11698/PED.2020.01.19

Abstract

As the hydrocarbon generation and storage mechanisms of high quality shales of Upper Ordovician Wufeng Formation- Lower Silurian Longmaxi Formation remain unclear, based on geological conditions and experimental modelling of shale gas formation, the shale gas generation and accumulation mechanisms as well as their coupling relationships of deep water shelf shales in Wufeng-Longmaxi Formation of Sichuan Basin were analyzed from petrology, mineralogy, and geochemistry. The high quality shales of Wufeng-Longmaxi Formation in Sichuan Basin are characterized by high thermal evolution, high hydrocarbon generation intensity, good material base, and good roof and floor conditions; the high quality deep-water shelf shale not only has high biogenic silicon content and organic carbon content, but also high porosity coupling. It is concluded through the study that: (1) The shales had good preservation conditions and high retainment of crude oil in the early times, and the shale gas was mainly from cracking of crude oil. (2) The biogenic silicon (opal A) turned into crystal quartz in early times of burial diagenesis, lots of micro-size intergranular pores were produced in the same time; moreover, the biogenic silicon frame had high resistance to compaction, thus it provided the conditions not only for oil charge in the early stage, but also for formation and preservation of nanometer cellular-like pores, and was the key factor enabling the preservation of organic pores. (3) The Wufeng-Longmaxi Formation high quality shale had high brittleness, strong homogeneity, siliceous intergranular micro-pores and nanometer organic pores, which were conducive to the formation of complicated fissure network connecting the siliceous intergranular nano-pores, and thus high and stable production of shale gas.

参考文献

[1] 郭旭升. 涪陵页岩气田焦石坝区块富集机理与勘探技术[M]. 北京: 科学出版社, 2014.
GUO Xusheng.Enrichment mechanism and exploration technology of Jiaoshiba area in Fuling shale gas field[M]. Beijing: Science Press, 2014.
[2] 郭旭升, 胡东风, 魏志红, 等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探, 2016, 21(3): 24-37.
GUO Xusheng, HU Dongfeng, WEI Zhihong, et al.Discovery and exploration of Fuling shale gas field[J]. China Petroleum Exploration, 2016, 21(3): 24-37.
[3] 马新华, 谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018, 45(1): 161-169.
MA Xinhua, XIE Jun.The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1): 161-169.
[4] 梁兴, 王高成, 张介辉, 等. 昭通国家级示范区页岩气一体化高效开发模式及实践启示[J]. 中国石油勘探, 2017, 22(1): 29-37.
LIANG Xing, WANG Gaocheng, ZHANG Jiehui, et al.High- efficiency integrated shale gas development model of Zhaotong National Demonstration Zone and its practical enlightenment[J]. China Petroleum Exploration, 2017, 22(1): 29-37.
[5] 曾庆才, 陈胜, 贺佩, 等. 四川盆地威远龙马溪组页岩气甜点区地震定量预测[J]. 石油勘探与开发, 2018, 45(3): 406-414.
ZENG Qingcai, CHEN Sheng, HE Pei, et al.Quantitative seismic prediction of shale gas sweet spots in Lower Silurian Longmaxi Formation, Weiyuan area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(3): 406-414.
[6] 王强, 魏祥峰, 魏富彬, 等. 川东南涪陵地区五峰组—龙马溪组页岩气藏中的超压作用[J]. 石油实验地质, 2019, 41(3): 333-340.
WANG Qiang, WEI Xiangfeng, WEI Fubin, et al.Overpressure in shale gas reservoirs of Wufeng-Longmaxi formations, Fuling area, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2019, 41(3): 333-340.
[7] GUO X, HU D, LI Y, et al.Geological features and reservoiring mode of shale gas reservoirs in Longmaxi Formation of the Jiaoshiba Area[J]. Acta Geologica Sinica (English Edition), 2014, 88(6): 1811-1821.
[8] GUO X, HU D, LI Y, et al.Technologies in discovery and exploration of Fuling shale gas field, China[J]. Natural Resources, 2016, 7(5): 271.
[9] 张金川, 聂海宽, 徐波, 等. 四川盆地页岩气成藏地质条件[J]. 天然气工业, 2008, 28(2): 151-156.
ZHANG Jinchuan, NIE Haikuan, XU Bo, et al.Geological condition of shale gas accumulation in Sichuan Basin[J]. Natural Gas Industry, 2008, 28(2): 151-156.
[10] 聂海宽, 张金川. 页岩气储层类型和特征研究: 以四川盆地及其周缘下古生界为例[J]. 石油实验地质, 2011, 33(3): 219-225.
NIE Haikuan, ZHANG Jinchuan.Types and characteristics of shale gas reservoir: A case study of Lower Paleozoic in and around Sichuan Basin[J]. Petroleum Geology and Experiment, 2011, 33(3): 219-225.
[11] 吴礼明, 丁文龙, 张金川, 等. 渝东南地区下志留统龙马溪组富有机质页岩储层裂缝分布预测[J]. 石油天然气学报, 2011, 33(9): 43-46.
WU Liming, DING Wenlong, ZHANG Jinchuan, et al.Fracture prediction of organic-enriched shale reservoir in lower Silrian Longmaxi Formation of Southeastern Chongqiong Area[J]. Journal of Oil and Gas Technology, 2011, 33(9): 43-46.
[12] 魏志红. 四川盆地及其周缘五峰组—龙马溪组页岩气的晚期逸散[J]. 石油与天然气地质, 2015, 36(4): 659-665.
WEI Zhihong.Late fugitive emission of shale gas from Wufeng-Longmaxi formation in Sichuan Basin and its periphery[J]. Oil and Gas Geology, 2015, 36(4): 659-665.
[13] 黄仁春, 魏祥峰, 王强. 四川盆地东南缘丁山地区页岩气成藏富集的关键控制因素[J]. 海相油气地质, 2017, 22(2): 25-30.
HUANG Renchun, WEI Xiangfeng, WANG Qiang.Key factors of shale gas accumulation in Dingshan area of southeastern Sichuan Basin[J]. Marine Origin Petroleum Geology, 2017, 22(2): 25-30.
[14] 郭旭升. 南方海相页岩气“二元富集”规律: 四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7): 1209-1218.
GUO Xusheng.Rules of two-factor enrichiment for marine shale gas in southern China: Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7): 1209-1218.
[15] 高占京, 郑和荣, 黄韬. 美国俄克拉荷马州伍德福德页岩甜点控制因素研究[J]. 石油实验地质, 2016, 38(3): 340-345.
GAO Zhanjing, ZHENG Herong, HUANG Tao.Attributes of sweet spots in the Devonian Woodford shales in Oklahoma, USA[J]. Petroleum Geology & Experiment, 2016, 38(3): 340-345.
[16] 郝芳, 陈建渝. 论有机质生烃潜能与生源的关系及干酪根的成因类型[J]. 现代地质, 1993(1): 57-65.
HAO Fang, CHEN Jianyu.Relationship between hydrocarbon potential and biological types of kerogen[J]. Geoscience, 1993(1): 57-65.
[17] 郭旭升, 胡东风, 李宇平, 等. 涪陵页岩气田富集高产主控地质因素[J]. 石油勘探与开发, 2017, 44(4): 481-491.
GUO Xusheng, HU Dongfeng, LI Yuping, et al.Geological factors controlling shale gas enrichment and high production in Fuling shale gas field[J]. Petroleum Exploration and Development, 2017, 44(4): 481-491.
[18] 腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44(1): 69-78.
BORJIGIN Tenger, SHEN Baojian, YU Lingjie, et al.Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng- Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 69-78.
[19] 肖贤明, 王茂林, 魏强, 等. 中国南方下古生界页岩气远景区评价[J]. 天然气地球科学, 2015, 26(8): 1433-1445.
XIAO Xianming, WANG Maolin, WEI Qiang, et al.Evaluation of Lower Paleozoic shale with shale gas prospect in south China[J]. Natural Gas Geoscience, 2015, 26(8): 1433-1445.
[20] 戴金星, 倪云燕, 黄士鹏. 四川盆地黄龙组烷烃气碳同位素倒转成因的探讨[J]. 石油学报, 2010, 31(5): 710-717.
DAI Jinxing, NI Yunyan, HUANG Shipeng.Discussion on the carbon isotopic reversal of alkane gases from the Huanglong Formation in the Sichuan Basin, China[J]. Acta Petrolei Sinica, 2010, 31(5): 710-717.
[21] 刘若冰. 中国首个大型页岩气田典型特征[J]. 天然气地球科学, 2015, 26(8): 1488-1498.
LIU Ruobing.Typical features of the first giant shale gas field in China[J]. Natural Gas Geoscience, 2015, 26(8): 1488-1498.
[22] 冯子齐, 刘丹, 黄士鹏, 等. 四川盆地长宁地区志留系页岩气碳同位素组成[J]. 石油勘探与开发, 2016, 43(5): 705-713.
FENG Ziqi, LIU Dan, HUANG Shipeng, et al.Carbon isotopic composition of shale gas in the Silurian Longmaxi Formation of the Changning area, Sichuan Basin[J]. Petroleum Exploration and Development, 2016, 43(5): 705-713.
[23] ZHANG S, HE K, HU G, et al.Unique chemical and isotopic characteristics and origins of natural gases in the Paleozoic marine formations in the Sichuan Basin, SW China: Isotope fractionation of deep and high mature carbonate reservoir gases[J]. Marine and Petroleum Geology, 2018, 89(Part 1): 68-82.
[24] 马中良, 郑伦举, 李志明. 烃源岩有限空间温压共控生排烃模拟实验研究[J]. 沉积学报, 2012, 30(2): 955-963.
MA Zhongliang, ZHENG Lunju, LI Zhiming.The thermocompression simulation experiment of source rock hydrocarbon generation and expulsion in formation porosity[J]. Acta Sedimentologica Sinica, 2012, 30(2): 955-963.
[25] 秦亚超. 生物硅早期成岩作用研究进展[J]. 地质论评, 2010, 56(1): 89-98.
QIN Yachao.Research progress in early diagenesis of biogenic silica[J]. Geological Review, 2010, 56(1): 89-98.
[26] 方少仙, 侯方浩, 孙逢育, 等. 百色盆地田东拗陷第三系砂岩成岩作用与孔隙演化研究[J]. 天然气工业, 1993, 13(1): 32-41.
FANG Shaoxian, HOU Fanghao, SUN Fengyu, et al.Study of diagenesis and pore evolution of sandstone in tertiary in Tiandong Depression in Bose Basin[J]. Nature Gas Industry, 1993, 13(1): 32-41.
[27] 秦晓艳, 林进, 武富礼. 鄂尔多斯盆地东南部本溪组致密石英砂岩成岩作用与孔隙演化[J]. 西北大学学报(自然科学版), 2016, 46(4): 579-584.
QIN Xiaoyan, LIN Jin, WU Fuli.Diagenesis and porosity evolution of tight quartz sandstones in Benxi Formation, Southeast Ordos Basin[J]. Journal of Northwest University (Natural Science Edition), 2016, 46(4): 579-584.
[28] 侯连浪, 刘向君, 梁利喜, 等. 滇东黔西松软煤岩三轴压缩力学特性及能量演化特征[J]. 中国安全生产技术, 2019, 15(2): 105-110.
HOU Lianlang, LIU Xiangjun, LIANG Lixi, et al.Triaxial compression mechanical properties and energy evolution characteristics of soft coal and rock in eastern Yunnan and western Guizhou[J]. Journal of Safety Science and Technology, 2019, 15(2): 105-110.
文章导航

/