新能源领域

致密砂岩储集层的二元孔隙结构特征

  • 祝海华 ,
  • 张廷山 ,
  • 钟大康 ,
  • 李耀羽 ,
  • 张婧璇 ,
  • 陈晓慧
展开
  • 1. 油气藏地质与开发工程国家重点实验室,成都 610500;
    2. 西南石油大学地球科学与技术学院,成都 610500;
    3. 中国石油大学(北京)地球科学与技术学院,北京 102249;
    4. RMIT University,Melbourne VIC3000,Australia
祝海华(1987-),男,浙江江山人,博士,西南石油大学地球科学与技术学院讲师,主要从事非常规储集层研究工作。地址:四川省成都市新都区新都大道8号,西南石油大学地球科学与技术学院,邮政编码:610500。E-mail:zhhswpu@163.com

收稿日期: 2019-04-16

  修回日期: 2019-09-05

  网络出版日期: 2019-11-20

基金资助

国家科技重大专项“大型油气田及煤层气开发”(2017ZX05063002-009); 博士后基金“非碱湖沉积砂体碱性成岩作用机理”(2015M580797)

Binary pore structure characteristics of tight sandstone reservoirs

  • ZHU Haihua ,
  • ZHANG Tingshan ,
  • ZHONG Dakang ,
  • LI Yaoyu ,
  • ZHANG Jingxuan ,
  • CHEN Xiaohui
Expand
  • 1. Stake Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu 610500, China;
    2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    3. School of Earth Science, China University of Petroleum, Beijing 102249, China;
    4. RMIT University, Melbourne, VIC 3000, Australia

Received date: 2019-04-16

  Revised date: 2019-09-05

  Online published: 2019-11-20

摘要

利用薄片、物性、含油饱和度、压汞数据分析鄂尔多斯盆地三叠系延长组7段致密砂岩孔隙结构特征及对物性、含油性的影响。结果显示致密砂岩具有二元孔隙结构特征:当孔喉半径大于峰值半径时,孔隙结构近似于串珠模型,孔隙半径明显大于喉道半径,不具备分形特征,孔喉体积由孔隙体积决定;当孔喉半径小于峰值半径时,孔隙结构为毛细管模型,孔隙半径与喉道半径相近,具有分形特征,孔喉体积由喉道半径决定。大于峰值半径的孔喉发育程度是造成致密砂岩孔渗变化的主要因素,油相也主要赋存于该部分孔喉中;小于峰值半径的孔喉(包括未进汞孔喉)贡献主要的储集空间,但相对稳定,对物性变化影响小,与含油饱和度也缺少相关性。大孔喉主要由次生孔隙和粒间孔组成,预测致密砂岩物性时,应着重分析致密储集层中粒间孔隙、溶蚀孔隙等大孔隙而非微小孔隙的特征、成因及主控因素。图11表3参30

本文引用格式

祝海华 , 张廷山 , 钟大康 , 李耀羽 , 张婧璇 , 陈晓慧 . 致密砂岩储集层的二元孔隙结构特征[J]. 石油勘探与开发, 2019 , 46(6) : 1220 -1228 . DOI: 10.11698/PED.2019.06.20

Abstract

The pore structure and its influence on physical properties and oil saturation of the Triassic Chang 7 sandstones, Ordos Basin were discussed using thin sections, physical properties, oil saturation and mercury intrusion data. The results show that the tight sandstone has a binary pore structure: when the pore throat radius is larger than the peak radius, the pore radius is significantly larger than throat size, the pore structure is similar to the bead-string model with no fractal feature, and the pore throat volume is determined by the pore volume. When the pore throat radius is smaller than the peak radius, the pore structure is close to the capillary model and shows fractal features, the pore size is close to the throat size, and the pore throat volume is determined by the throat radius. The development of pore throats larger than the peak radius provides most of the oil storage space and is the major controlling factor for the porosity and permeability variation of tight sandstone. The pore throat smaller than the peak radius (including throats with no mercury invaded) contributes major reservoir space, it shows limited variation and has little effect on the change of physical properties which is lack of correlation with oil saturation. The pore throat larger than the peak radius is mainly composed of secondary and intergranular pores. Therefore genesis and main controlling factors of large pores such as intergranular and dissolved pores should be emphasized when predicting the tight sandstones quality.

参考文献

[1] 王瑞飞, 陈明强. 特低渗透砂岩储层可动流体赋存特征及影响因素[J]. 石油学报, 2008, 29(4): 558-561.
WANG Ruifei, CHEN Mingqiang.Characteristics and influencing factors of movable fluid in ultra-low permeability sandstone reservoir[J]. Acta Petrolei Sinica, 2008, 29(4): 558-561.
[2] SHANLEY K W, CLUFF R M.The evolution of pore-scale fluid-saturation in low-permeability sandstone reservoirs[J]. AAPG Bulletin, 2015, 99(10): 1957-1990.
[3] ZHU H, ZHONG D, ZHANG T, et al.Diagenetic controls on the reservoir quality of fine-grained “tight” sandstones: A case study based on NMR analysis[J]. Energy & Fuels, 2018, 32(2): 1612-1623.
[4] 郑可, 徐怀民, 陈建文, 等. 低渗储层可动流体核磁共振研究[J]. 现代地质, 2013, 27(3): 710-718.
ZHENG Ke, XU Huaimin, CHEN Jianwen, et al.Movable fluid study of low permeability reservoir with nuclear magnetic resonance technology[J]. Geoscience, 2013, 27(3): 710-718.
[5] GAO H, LI H A.Pore structure characterization, permeability evaluation and enhanced gas recovery techniques of tight gas sandstones[J]. Journal of Natural Gas Science & Engineering, 2016, 28(1): 536-547.
[6] NELSON P H.Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 2009, 93(3): 329-340.
[7] ZHAO H, NING Z, WANG Q, et al.Petrophysical characterization of tight oil reservoirs using pressure-controlled porosimetry combined with rate-controlled porosimetry[J]. Fuel, 2015, 154(8): 233-242.
[8] ROSENBRAND E, FABRICIUS I L, FISHER Q, et al.Permeability in rotliegend gas sandstones to gas and brine as predicted from NMR, mercury injection and image analysis[J]. Marine and Petroleum Geology, 2015, 64(6): 189-202.
[9] CAO Z, LIU G, ZHAN H, et al.Pore structure characterization of Chang-7 tight sandstone using MICP combined with N2GA techniques and its geological control factors[J]. Scientific Reports, 2016, 6: 36919.
[10] HIGGS K E, ZWINGMANN H, REYES A G, et al.Diagenesis, porosity evolution, and petroleum emplacement in tight gas reservoirs, Taranaki Basin, New Zealand[J]. Journal of Sedimentary Research, 2007, 77(12): 1003-1025.
[11] LAI J, WANG G, WANG Z, et al.A review on pore structure characterization in tight sandstones[J]. Earth-Science Reviews, 2018, 177(2): 436-457.
[12] SCHMITT M, FERNANDES C P, WOLF F G, et al.Characterization of Brazilian tight gas sandstones relating permeability and Angstrom-to micron-scale pore structures[J]. Journal of Natural Gas Science & Engineering, 2015, 27(2): 785-807.
[13] 刘翰林, 杨友运, 王凤琴, 等. 致密砂岩储集层微观结构特征及成因分析: 以鄂尔多斯盆地陇东地区长6段和长8段为例[J]. 石油勘探与开发, 2018, 45(2): 223-234.
LIU Hanlin, YANG Youyun, WANG Fengqin, et al.Micro pore and throat characteristics and origin of tight sandstone reservoirs: A case study of the Triassic Chang 6 and Chang 8 members in Longdong area, Ordos Basin, NW China[J]. Petroleum Exploration & Development, 2018, 45(2): 223-234.
[14] WANG X, HOU J, SONG S, et al.Combining pressure-controlled porosimetry and rate-controlled porosimetry to investigate the fractal characteristics of full-range pores in tight oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2018, 171(12): 353-361.
[15] LAI J, WANG G, FAN Z, et al.Insight into the pore structure of tight sandstones using NMR and HPMI measurements[J]. Energy & Fuels, 2016, 30(12): 10200-10214.
[16] FENG Z, WENXUAN H, JIAN C, et al.Micro/nanoscale pore structure and fractal characteristics of tight gas sandstone: A case study from the Yuanba area, northeast Sichuan Basin, China[J]. Marine and Petroleum Geology, 2018, 98(12): 116-132.
[17] KATE J M, GOKHALE C S.A simple method to estimate complete pore size distribution of rocks[J]. Engineering Geology, 2006, 84(1/2): 48-69.
[18] LI K.Analytical derivation of Brooks-Corey type capillary pressure models using fractal geometry and evaluation of rock heterogeneity[J]. Journal of Petroleum Science and Engineering, 2010, 73(1/2): 20-26.
[19] 牛小兵, 冯胜斌, 刘飞, 等. 低渗透致密砂岩储层中石油微观赋存状态与油源关系: 以鄂尔多斯盆地三叠系延长组为例[J]. 石油与天然气地质, 2013, 34(3): 288-293.
NIU Xiaobing, FENG Shengbin, LIU Fei, et al.Microscopic occurrence of oil in tight sandstones and its relation with oil sources: A case study from the Upper Triassic Yanchang Formation, Ordos Basin[J]. Oil & Gas Geology, 2013, 34(3): 288-293.
[20] 李海波, 郭和坤, 杨正明, 等. 鄂尔多斯盆地陕北地区三叠系长7致密油赋存空间[J]. 石油勘探与开发, 2015, 42(3): 396-400.
LI Haibo, GUO Hekun, YANG Zhengming, et al.Tight oil occurrence space of Triassic Chang 7 Member in Northern Shaanxi Area, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(3): 396-400.
[21] ZOU C, JIN X, ZHU R, et al.Do shale pore throats have a threshold diameter for oil storage?[J]. Scientific Reports, 2015, 5: 13619.
[22] MCCREESH C A, ERLICH R, Crabtree S J.Petrography and reservoir physics II: Relating thin section porosity to capillary pressure, the association between pore types and throat size[J]. AAPG Bulletin, 1991, 75(10): 1563-1578.
[23] WILKINSON M, HASZELDINE R S.Oil charge preserves exceptional porosity in deeply buried, overpressured, sandstones: Central North Sea, UK[J]. Journal of the Geological Society, 2011, 168(6): 1285-1295.
[24] WORDEN R H, BUKAR M, SHELL P.The effect of oil emplacement on quartz cementation in a deeply buried sandstone reservoir[J]. AAPG Bulletin, 2018, 102(1): 49-75.
[25] DUTTON S P, LOUCKS R G.Reprint of: Diagenetic controls on evolution of porosity and permeability in lower Tertiary Wilcox sandstones from shallow to ultradeep (200-6700 m) burial, Gulf of Mexico Basin, U.S.A.[J]. Marine & Petroleum Geology, 2010, 27(1): 69-81.
[26] ZHU H, LIU G, ZHONG D, et al.Diagenetic controls on reservoir quality of tight sandstone: A case study of the Upper Triassic Yanchang formation Chang 7 sandstones, Ordos Basin, China[J]. Earth Sciences Research Journal, 2018, 22(2): 129-138.
[27] KROHN C E.Fractal measurements of sandstones, shales, and carbonates[J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B4): 3297-3305.
[28] TOLEDO P G, NOVY R A, DAVIS H T, et al.Capillary pressure, water relative permeability, electrical conductivity and capillary dispersion coefficient of fractal porous media at low wetting phase saturations[J]. SPE Advanced Technology Series, 1994, 2(1): 136-141.
[29] HUANG W, LU S, HERSI O S, et al.Reservoir spaces in tight sandstones: Classification, fractal characters, and heterogeneity[J]. Journal of Natural Gas Science and Engineering, 2017, 46(10): 80-92.
[30] KATZ A J, THOMPSON A H.Fractal sandstone pores: Implications for conductivity and pore formation[J]. Physical Review Letters, 1985, 54(12): 1325-1328.
文章导航

/