油气田开发

离子匹配水驱提高碳酸盐岩油藏采收率机理及实验—以中东哈法亚油田白垩系灰岩为例

  • 彭颖锋 ,
  • 李宜强 ,
  • 朱光亚 ,
  • 潘登 ,
  • 徐善志 ,
  • 王秀宇
展开
  • 1. 油气资源与探测国家重点实验室,北京102249;
    2. 中国石油大学(北京)石油工程学院,北京102249;
    3. 中国石油勘探开发研究院中东研究所,北京100083
彭颖锋(1989-),男,四川内江人,中国石油大学(北京)石油工程学院在读博士,主要从事碳酸盐岩及低渗砂岩储集层提高原油采收率方面的研究。地址:北京市昌平区府学路18号,中国石油大学(北京),石油工程学院,邮政编码:102249。E-mail: pyfgood@163.com

收稿日期: 2019-04-10

  修回日期: 2019-08-15

  网络出版日期: 2019-11-20

基金资助

国家科技重大专项“伊拉克大型生物碎屑灰岩油藏注水开发关键技术研究与应用”(2017ZX05030-001)

Mechanisms and experimental research of ion-matched waterflooding to enhance oil recovery in carbonate reservoirs: A case of Cretaceous limestone reservoirs in Halfaya Oilfield, Middle East

  • PENG Yingfeng ,
  • LI Yiqiang ,
  • ZHU Guangya ,
  • PAN Deng ,
  • XU Shanzhi ,
  • WANG Xiuyu
Expand
  • 1. State Key Laboratory of Petroleum Resources and Prospecting, Beijing 102249, China;
    2. College of Petroleum Engineering, China Petroleum University (Beijing), Beijing 102249, China;
    3. Research Institute of Petroleum Exploration & Development (RIPED), PetroChina, Beijing 100083, China;

Received date: 2019-04-10

  Revised date: 2019-08-15

  Online published: 2019-11-20

摘要

在系统总结离子匹配水驱现有研究成果的基础上,按2种分类标准重点阐述了提高采收率机理的多样性与协同性以及机理之间的相互作用,研究了不同离子行为差异对不同机理和驱油效率的影响。提出采用离子强度来表征一价及二价离子的行为差异,并建立离子强度、有效浓度与作用机理间的联系,表征多种机理背后的离子行为,评价离子匹配注入水的性能。离子匹配水驱提高采收率机理主要表现为:①降低地层水离子强度、匹配地层水离子组成,进而降低碳酸盐岩表面一价离子与二价离子的有效浓度差,提高潜在决定性离子有效浓度(尤其是SO42-);②改善润湿性、油水界面性质、油藏孔隙结构与物性,最终在打破原有地层离子平衡的同时建立有利于水驱油的新离子平衡,改善驱油效果。选用中东哈法亚油田白垩系Mishrif组碳酸盐岩岩心,开展了相渗、界面张力测试、天然岩心驱油等实验,建立了注入水评价方法并优选出适合该储集层的注入水:海水稀释6倍比较适合该碳酸盐岩油藏实施离子匹配水驱,与普通海水相比,可提高驱油效率4.60%;与最佳稀释倍数地层水相比,可提高驱油效率3.14%以上。图15表9参40

本文引用格式

彭颖锋 , 李宜强 , 朱光亚 , 潘登 , 徐善志 , 王秀宇 . 离子匹配水驱提高碳酸盐岩油藏采收率机理及实验—以中东哈法亚油田白垩系灰岩为例[J]. 石油勘探与开发, 2019 , 46(6) : 1159 -1168 . DOI: 10.11698/PED.2019.06.13

Abstract

Based on systematically summarizing the achievements of previous ion-matched waterflooding researches, the diversity and synergy of oil recovery enhancement mechanisms and the interaction between mechanisms are examined according to two classification standards, and the influence of behaviors of different ions on different mechanisms and oil displacement efficiency are investigated. Ionic strength is proposed to characterize the behavior differences of univalent and divalent ions, the relationships between ionic strength, effective concentration, and mechanisms are established to characterize the ion behavior behind various mechanisms, and evaluate the performance of ion-matched injection water. The mechanisms of enhancing oil recovery by ion-matched waterflooding include: (1) The ion-matched water can reduce the ion strength and match the ion composition of formation water, thereby reducing the difference between the effective concentration of univalent ions and divalent ions on the surface of carbonate rocks, and improving the effective concentration of potential determining ions (especially SO42-). (2) It can improve wettability, oil-water interface properties, pore structure and physical properties of the reservoir, and finally enable the establishment of a new ionic equilibrium conducive to waterflooding while breaking the original equilibrium. In this study, experiments such as relative permeability curve, interfacial tension, and core-flooding were carried out on carbonate core samples from the Cretaceous Mishrif Formation reservoirs in Halfaya Oilfield, Middle East, a method for injection water evaluation was established and the injection water suitable for these reservoirs was selected: 6 times diluted seawater. Compared with ordinary seawater, oil displacement efficiency can be increased by more than 4.60% and compared with the optimum dilution of formation water, oil displacement efficiency can be increased by 3.14%.

参考文献

[1] 李阳, 康志江, 薛兆杰, 等. 中国碳酸盐岩油气藏开发理论与实践[J]. 石油勘探与开发, 2018, 45(4): 669-678.
LI Yang, KANG Zhijiang, XUE Zhaojie, et al.Theories and practices of carbonate reservoirs development in China[J]. Petroleum Exploration and Development, 2018, 45(4): 669-678.
[2] BRANCO F R, GIL N A.NMR study of carbonates wettability[J]. Journal of Petroleum Science and Engineering, 2017, 157: 288-294.
[3] LIU H, TIAN Z, LIU B, et al.Pore types, origins and control on reservoir heterogeneity of carbonate rocks in Middle Cretaceous Mishrif Formation of the West Qurna oilfield, Iraq[J]. Journal of Petroleum Science and Engineering, 2018, 171: 1338-1349.
[4] KHATHER M, SAEEDI A, REZAEE R, et al.Experimental evaluation of carbonated brine-limestone interactions under reservoir conditions: Emphasis on the effect of core scale heterogeneities[J]. International Journal of Greenhouse Gas Control, 2018, 68: 128-145.
[5] AWOLAYO A, SARMA H, NGHIEM L.Brine-dependent recovery processes in carbonate and sandstone petroleum reservoirs: Review of laboratory-field studies, interfacial mechanisms and modeling attempts[J]. Energies, 2018, 11(11): 1-66.
[6] AL-KHAFAJI A, WEN D.Quantification of wettability characteristics for carbonates using different salinities[J]. Journal of Petroleum Science and Engineering, 2019, 173: 501-511.
[7] ZAHID A, SANDERSEN S B, STENBY E H, et al.Advanced water flooding in chalk reservoirs: Understanding of underlying mechanisms[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2011, 389(1/2/3): 281-290.
[8] SHEHATA A M, ALOTAIBI M B, NASR-EL-DIN H A. Waterflooding in carbonate reservoirs: Does the salinity matter?[J]. SPE Reservoir Evaluation & Engineering, 2014, 17(3): 304-313.
[9] AWOLAYO A, SARMA H, ALSUMAITI A.An experimental investigation into the impact of sulfate ions in smart water to improve oil recovery in carbonate reservoirs[J]. Transport in Porous Media, 2016, 111(3): 649-668.
[10] AUSTAD T, SHARIATPANAHI S F, STRAND S, et al.Conditions for a low-salinity enhanced oil recovery (EOR) effect in carbonate oil reservoirs[J]. Energy & Fuels, 2011, 26(1): 569-575.
[11] REZAEIDOUST A, PUNTERVOLD T, STRAND S, et al.Smart water as wettability modifier in carbonate and sandstone: A discussion of similarities/differences in the chemical mechanisms[J]. Energy & Fuels, 2009, 23(9): 4479-4485.
[12] CHEN S Y, KRISTIANSEN K, SEO D, et al.Time-dependent physico-chemical changes of carbonate surfaces from SmartWater (diluted seawater)-flooding processes for improved oil recovery[J]. Langmuir, 2018, 35(1): 41-50.
[13] AL MAHROUQI D, VINOGRADOV J, JACKSON M D.Temperature dependence of the zeta potential in intact natural carbonates[J]. Geophysical Research Letters, 2016, 43(22): 11578.
[14] RASHID S, MOUSAPOUR M S, AYATOLLAHI S, et al.Wettability alteration in carbonates during “Smart Waterflood”: Underlying mechanisms and the effect of individual ions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 487: 142-153.
[15] PUNTERVOLD T, STRAND S, ELLOUZ R, et al.Modified seawater as a smart EOR fluid in chalk[J]. Journal of Petroleum Science and Engineering, 2015, 133: 440-443.
[16] ESENE C, ONALO D, ZENDEHBOUDI S, et al.Modeling investigation of low salinity water injection in sandstones and carbonates: Effect of Na+ and <inline-graphic xlink:href="1000-0747-46-6-1159/img_16.wmf"/>[J]. Fuel, 2018, 232: 362-373.
[17] MAHANI H, KEYA A, BARTELS W, et al.Insights into the mechanism of wettability alteration by low-salinity flooding (LSF) in carbonates[J]. Energy and Fuels, 2015, 29(3): 1352-1367.
[18] CHAKRAVARTY K H.Interactions of fines with oil and its implication in smart water flooding[J]. Plastic & Reconstructive Surgery, 2015, 16(2): 135-137.
[19] GARCIA-OLVERA G, ALVARADO V.Interfacial rheological insights of sulfate-enriched smart-water at low and high-salinity in carbonates[J]. Fuel, 2017, 207: 402-412.
[20] BIDHENDI M M, GARCIA-OLVERA G, MORIN B, et al.Interfacial viscoelasticity of crude oil/brine: An alternative enhanced-oil-recovery mechanism in smart waterflooding[J]. SPE Journal, 2018, 23(3): 803-818.
[21] KHAKSAR MANSHAD A, OLAD M, TAGHIPOUR S A, et al.Effects of water soluble ions on interfacial tension (IFT) between oil and brine in smart and carbonated smart water injection process in oil reservoirs[J]. Journal of Molecular Liquids, 2016, 223: 987-993.
[22] GANDOMKAR A, RAHIMPOUR M R.The impact of monovalent and divalent ions on wettability alteration in oil/low salinity brine/limestone systems[J]. Journal of Molecular Liquids, 2017, 248: 1003-1013.
[23] ALHAMMADI M, MAHZARI P, SOHRABI M.Fundamental investigation of underlying mechanisms behind improved oil recovery by low salinity water injection in carbonate rocks[J]. Fuel, 2018, 220: 345-357.
[24] AYIRALA S C, AL-YOUSEF A A, LI Z, et al. Water ion interactions at crude-oil/water interface and their implications for smart waterflooding in carbonates[J]. SPE Journal, 2018, 23(5): 1817-1832.
[25] LASHKARBOLOOKI M, AYATOLLAHI S.Investigating injection of low salinity brine in carbonate rock with the assist of works of cohesion and adhesion and spreading coefficient calculations[J]. Journal of Petroleum Science and Engineering, 2018, 161: 381-389.
[26] GUZONAS D, NOVOTNY R, PENTTILÄ S, et al.4-Water chemistry[M]. Amsterdam: Elsevier Ltd, 2018.
[27] 朱优峰, 王凯雄. 水化学[M]. 北京: 化学工业出版社, 2010.
ZHU Youfeng, WANG Kaixiong.Water chemistry[M]. Beijing: Chemical Industry Press, 2010.
[28] VICENTE M E S D. The concept of ionic strength eighty years after its introduction in chemistry[J]. Journal of Chemical Education, 2004, 81(5): 750-753.
[29] MOHAMMADKHANI S, SHAHVERDI H, ESFAHANY M N.Impact of salinity and connate water on low salinity water injection in secondary and tertiary stages for enhanced oil recovery in carbonate oil reservoirs[J]. Journal of Geophysics and Engineering, 2018, 15(4): 1242-1254.
[30] YOUSEF A A, AL-SALEH S, AL-KAABI A, et al.Laboratory investigation of the impact of injection-water salinity and ionic content on oil recovery from carbonate reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(5): 578-593.
[31] 林梅钦, 华朝, 李明远. 利用盐水调节油藏岩石表面润湿性[J]. 石油勘探与开发, 2018, 45(1): 136-144.
LIN Meiqin, HUA Zhao, LI Mingyuan.Surface wettability control of reservoir rocks by brine[J]. Petroleum Exploration and Development, 2018, 45(1): 136-144.
[32] 王君, 郭睿, 赵丽敏, 等. 颗粒滩储集层地质特征及主控因素: 以伊拉克哈法亚油田白垩系Mishrif组为例[J]. 石油勘探与开发, 2016, 43(3): 367-377.
WANG Jun, GUO Rui, ZHAO Limin, et al.Geological features of grain bank reservoirs and the main controlling factors: A case study on Cretaceous Mishrif Formation, Halfaya Oilfield, Iraq[J]. Petroleum Exploration and Development, 2016, 43(3): 367-377.
[33] 宋新民, 李勇. 中东碳酸盐岩油藏注水开发思路与对策[J]. 石油勘探与开发, 2018, 45(4): 679-689.
SONG Xinmin, LI Yong.Optimum development options and strategies on water injection development in carbonate reservoirs in the Middle East[J]. Petroleum Exploration and Development, 2018, 45(4): 679-689.
[34] HASSAN M, ARSENE L K, STEFFEN B, et al.Electrokinetics of carbonate/brine interface in low-salinity waterflooding: Effect of brine salinity, composition, rock type, and pH on zeta-potential and a surface-complexation model[J]. SPE Journal, 2016, 22(1): 53-68.
[35] SU W, LIU Y, PI J, et al.Effect of water salinity and rock components on wettability alteration during low-salinity water flooding in carbonate rocks[J]. Arabian Journal of Geosciences, 2018, 11(11): 260.
[36] STANDNES D C, AUSTAD T.Wettability alteration in chalk: 1. Preparation of core material and oil properties[J]. Journal of Petroleum Science and Engineering, 2000, 28(3): 111-121.
[37] MWANGI P, BRADY P V, RADONJIC M, et al.The effect of organic acids on wettability of sandstone and carbonate rocks[J]. Journal of Petroleum Science and Engineering, 2018, 165: 428-435.
[38] 唐海, 何更生. 油层物理[M]. 2版. 北京: 石油工业出版社, 2011.
TANG Hai, HE Gengsheng.Fundamentals of petrophysics[M]. 2nd ed. Beijing: Petroleum Industry Press, 2011.
[39] ALSHEHRI A J, KOVSCEK A R.In-situ visualization of multidimensional imbibition in dual-porosity carbonates[J]. SPE Journal, 2016, 21(5): 1631-1642.
[40] AKSULU H, HÅMSØ D, STRAND S, et al. Evaluation of low-salinity enhanced oil recovery effects in sandstone: Effects of the temperature and pH gradient[J]. Energy & Fuels, 2012, 26(6): 3497-3503.
文章导航

/