油气田开发

聚表剂驱提高采收率机理实验—以大庆长垣油田为例

  • 于倩男 ,
  • 刘义坤 ,
  • 梁爽 ,
  • 谭帅 ,
  • 孙智 ,
  • 于洋
展开
  • 1. 广东石油化工学院机电工程学院,广东茂名 525000;
    2. 东北石油大学石油工程学院,黑龙江大庆 163318;
    3. 四川大学化学工程学院,成都 610065;
    4. 中国石油大庆油田有限责任公司,黑龙江大庆 163002
于倩男(1987-),男,黑龙江尚志人,博士,广东石油化工学院机电工程学院副教授,主要从事老油田改造与提高采收率理论与技术方面的研究工作。地址:广东省茂名市官渡二路139号,广东石油化工学院机电工程学院,邮政编码:525000。E-mail: canaan184@163.com

收稿日期: 2019-03-09

  修回日期: 2019-08-22

  网络出版日期: 2019-11-20

基金资助

中国博士后科学基金(2018M631891); 国家自然科学基金(51804078); 国家重大科技专项(2016ZX05010002-004,2016ZX05023005-001-003)

Experimental study on surface-active polymer flooding for enhanced oil recovery: A case study of Daqing placanticline oilfield, NE China

  • YU Qiannan ,
  • LIU Yikun ,
  • LIANG Shuang ,
  • TAN Shuai ,
  • SUN Zhi ,
  • YU Yang
Expand
  • 1. College of Mechanical and Electrical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China;
    2. School of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China;
    3. School of Chemical Engineering, Sichuan University, Chengdu 610065, China;
    4. PetroChina Daqing Oil Field Co. Ltd., Daqing 163002, China

Received date: 2019-03-09

  Revised date: 2019-08-22

  Online published: 2019-11-20

摘要

以大庆长垣油田储集层和流体为实验对象,利用检测分析和现代物理模拟技术,开展聚表剂驱提高采收率机理实验。研究表明,聚表剂的分子聚集性能、黏度性能和流动能力等与普通聚合物、聚合物-表面活性剂二元体系存在显著差异,聚表剂的分子线团尺寸更大,黏度及增黏性能更强,传输和运移能力较差。聚表剂溶液具备较好的增黏与黏度保持性能,同时拥有黏弹性与变形能力,可发挥增黏和黏弹性的积极作用;聚表剂可改善界面化学性质,降低油水界面张力,使储集层岩石的润湿性向亲水方向转变,同时可乳化原油形成相对稳定的水包油乳状液,在非超低界面张力条件下,乳化性能是提高洗油效率的重要特性。聚表剂驱扩大波及体积提高原油采收率机理表现为2个方面:微观上,聚表剂具有流度控制作用,可进入水驱未波及的含油孔隙驱替残余油,且流度控制作用对提高采收率的贡献远大于其洗油能力;宏观上,聚表剂具备乳化封堵能力,高渗透层位中水驱形成的优势通道被乳化封堵,注入流体转向进入渗流阻力较小的中低渗区,扩大波及体积。图24表6参13

本文引用格式

于倩男 , 刘义坤 , 梁爽 , 谭帅 , 孙智 , 于洋 . 聚表剂驱提高采收率机理实验—以大庆长垣油田为例[J]. 石油勘探与开发, 2019 , 46(6) : 1138 -1147 . DOI: 10.11698/PED.2019.06.11

Abstract

Experiments on surface-active polymer flooding for enhanced oil recovery were carried out by detection analysis and modern physical simulation technique based on reservoirs and fluids in Daqing placanticline oilfield. The experimental results show that the surface-active polymer is different from other common polymers and polymer-surfactant systems in molecular aggregation, viscosity and flow capacity, and it has larger molecular coil size, higher viscosity and viscosifying capacity, and poorer mobility. The surface-active polymer solution has good performance of viscosity-increasing and viscosity retention, and has good performance of viscoelasticity and deformability to exert positive effects of viscosifying and viscoelastic properties. Surface-active polymer can change the chemical property of interface and reduce interfacial tension, making the reservoir rock turn water-wet, also it can emulsify the oil into relatively stable oil-in-water emulsion, and emulsification capacity is an important property to enhance oil washing efficiency under non-ultralow interfacial tension. The surface-active polymer flooding enlarges swept volume in two ways: Microscopically, the surface-active polymer has mobility control effect and can enter oil-bearing pores not swept by water to drive residual oil, and its mobility control effect has more contribution than oil washing capacity in enhancing oil recovery. Macroscopically, it has plugging capacity, and can emulsify and plug the dominant channels in layers with high permeability, forcing the injected fluid to enter the layer with medium or low permeability and low flow resistance, and thus enlarging swept volume.

参考文献

[1] 王玉普, 刘义坤, 邓庆军. 中国陆相砂岩油田特高含水期开发现状及对策[J]. 东北石油大学学报, 2014, 38(1): 1-9, 131.
WANG Yupu, LIU Yikun, DENG Qingjun.Current situation and development strategy of the extra high water cut stage of continental facies sandstone oil fields in China[J]. Journal of Northeast Petroleum University, 2014, 38(1): 1-9, 131.
[2] 袁士义, 王强. 中国油田开发主体技术新进展与展望[J]. 石油勘探与开发, 2018, 45(4): 657-668.
YUAN Shiyi, WANG Qiang.New progress and prospect of oilfields development technologies in China[J]. Petroleum Exploration and Development, 2018, 45(4): 657-668.
[3] NEDJHIOUI M, MOULAI-MOSTEFA N, MORSLI A, et al.Combined effects of polymer/surfactant/oil/alkali on physical chemical properties[J]. Desalination, 2005, 185(1/2/3): 543-550.
[4] 刘平德, 张松, 杨宁, 等. 新型表面活性聚合物驱油剂[J]. 石油勘探与开发, 2012, 39(5): 619-623.
LIU Pingde, ZHANG Song, YANG Ning, et al.A novel surface active polymer oil displacement agent[J]. Petroleum Exploration and Development, 2012, 39(5): 619-623.
[5] 皮彦夫, 龚亚. 陆上油田聚驱后聚表剂驱渗流场变化规律研究[J]. 石油化工高等学校学报, 2016, 29(4): 66-71.
PI Yanfu, GONG Ya.The variation laws of seepage of hydrophobic associating polymer flooding after polymer flooding in onshore oilfields[J]. Journal of Petrochemical Universities, 2016, 29(4): 66-71.
[6] 牛丽伟, 卢祥国, 王晓燕, 等. 聚合物、聚表剂和Cr3+聚合物凝胶分子构型及其渗流特性差异[J]. 中国石油大学学报(自然科学版), 2014, 38(6): 186-191.
NIU Liwei, LU Xiangguo, WANG Xiaoyan, et al.Differences in molecular configuration and seepage properties among polymer, active polymer and Cr3+ polymer gel[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(6): 186-191.
[7] 夏惠芬, 王德民, 刘中春, 等. 粘弹性聚合物溶液提高微观驱油效率的机理研究[J]. 石油学报, 2001, 22(4): 60-65.
XIA Huifen, WANG Demin, LIU Zhongchun, et al.Study on the mechanism of polymer solution with viscoelastic behavior increasing microscopic oil displacement efficiency[J]. Acta Petrolei Sinica, 2001, 22(4): 60-65.
[8] HOU J, LIU Z, ZHANG S, et al.The role of viscoelasticity of alkali/surfactant/polymer solutions in enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2005, 47(3/4): 219-235.
[9] URBISSINOVA T, TRIVEDI J J, KURU E.Effect of elasticity during viscoelastic polymer flooding: A possible mechanism of increasing the sweep efficiency[R]. SPE 133471-PA, 2010.
[10] TOUHAMI Y, RANA D, NEALE G H, et al.Study of polymer-surfactant interactions via surface tension measurements[J]. Colloid and Polymer Science, 2001, 279(3): 297-300.
[11] KANG W, XU B, WANG Y, et al.Stability mechanism of W/O crude oil emulsion stabilized by polymer and surfactant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384(1/2/3): 555-560.
[12] MOHAN K, GUPTA R, MOHANTY K K.Wettability altering secondary oil recovery in carbonate rocks[J]. Energy & Fuels, 2011, 25(9): 3966-3973.
[13] GUILLEN V R, ROMERO M I, CARVALHO M D S, et al. Capillary-driven mobility control in macro emulsion flow in porous media[J]. International Journal of Multiphase Flow, 2012, 43: 62-65.
文章导航

/