油气勘探

基于同步辐射装置定量表征煤孔隙结构非均质性和各向异性

  • 孙英峰 ,
  • 赵毅鑫 ,
  • 王欣 ,
  • 彭磊 ,
  • 孙强
展开
  • 1. 中国矿业大学(北京)能源与矿业学院,北京 100083;
    2. 中国矿业大学(北京)应急管理与安全工程学院,北京 100083;
    3. 共伴生能源精准开采北京市重点实验室,北京 100083;
    4. 中国矿业大学(北京)力学与建筑工程学院,北京 100083;
    5. 中国石油勘探开发研究院,北京 100083
孙英峰(1989-),男,山西晋中人,博士,中国矿业大学(北京)在站博士后,主要从事煤储集层微观结构表征及煤层气开发方面的研究。地址:北京市海淀区学院路丁11号,中国矿业大学(北京)能源与矿业学院,邮政编码:100083。E-mail:yingfengsun@163.com

收稿日期: 2019-04-25

  修回日期: 2019-10-14

  网络出版日期: 2019-11-20

基金资助

国家自然科学基金(51861145403,51874312); 中国博士后科学基金(2018M641526)

Synchrotron radiation facility-based quantitative evaluation of pore structure heterogeneity and anisotropy in coal

  • SUN Yingfeng ,
  • ZHAO Yixin ,
  • WANG Xin ,
  • PENG Lei ,
  • SUN Qiang
Expand
  • 1. School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;
    2. School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;
    3. Beijing Key Laboratory for Precise Mining of Intergrown Energy and Resources, China University of Mining and Technology (Beijing), Beijing 100083, China;
    4. School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;
    5. Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China;

Received date: 2019-04-25

  Revised date: 2019-10-14

  Online published: 2019-11-20

摘要

为了定量表征煤孔隙结构非均质性和各向异性,利用同步辐射SAXS(小角X射线散射)获得两种不同变质程度煤样的SAXS图像,通过图像数据处理,得到表面分形(D1)和孔分形(D2),由孔分形(D2)定量表征两种煤样孔隙结构的非均质性,忻州窑煤的孔分形维数为2.74,唐山煤的孔分形维数为1.69,表明忻州窑煤的孔隙结构非均质性要比唐山煤强。利用同步辐射nano-CT(纳米CT)获得煤的三维孔隙结构成像,选取煤样兴趣区域(ROI)并分成一定数量的子块,通过计算子块孔隙度的相对标准偏差的极值来定量表征孔隙结构的非均质性,忻州窑煤的孔隙结构非均质性值为3.21,唐山煤的孔隙结构非均质性值为2.71,表明忻州窑煤的孔隙结构非均质性同样强于唐山煤,即同步辐射SAXS和同步辐射nano-CT获得的孔隙结构非均质性一致。考虑到孔隙结构各向异性和渗流能力各向异性之间的对应关系,孔隙结构各向异性的定量表征通过运用LBM(格子Boltzmann方法)方法计算孔隙结构的渗透率张量来实现,应用渗透率张量特征值和特征向量来表征孔隙结构的各向异性,该方法得到的孔隙结构各向异性得到三维孔隙结构几何形貌的验证。图11表1参48

本文引用格式

孙英峰 , 赵毅鑫 , 王欣 , 彭磊 , 孙强 . 基于同步辐射装置定量表征煤孔隙结构非均质性和各向异性[J]. 石油勘探与开发, 2019 , 46(6) : 1128 -1137 . DOI: 10.11698/PED.2019.06.10

Abstract

In order to quantify coal pore structure heterogeneity and anisotropy, synchrotron radiation SAXS (Small Angle X-ray Scattering) was applied to obtain the SAXS images of two different rank coal samples. The surface fractal dimension (D1) and pore fractal dimension (D2) were obtained by processing the image data. The pore structure heterogeneity of two coal samples was quantified by pore fractal dimension (D2). Pore fractal dimension of Xinzhouyao coal is 2.74 and pore fractal dimension of Tangshan coal is 1.69. As a result, the pore structure heterogeneity of Xinzhouyao coal is stronger than that of Tangshan coal. 3D pore structure imaging was achieved by synchrotron radiation nano-CT. The selected Region of Interest (ROI) of coal sample was divided into a certain number of subvolumes. Pore structure heterogeneity was quantified by calculating the limit of the relative standard deviation of each subvolume's porosity. The heterogeneity value of Xinzhouyao coal pore structure is 3.21 and the heterogeneity value of Tangshan coal pore structure is 2.71. As a result, the pore structure heterogeneity of Xinzhouyao coal is also stronger than that of Tangshan coal, namely, pore structure heterogeneity from synchrotron radiation SAXS and synchrotron radiation nano-CT is consistent. Considering the corresponding relationship between the pore structure anisotropy and the permeability anisotropy, the quantification of pore structure anisotropy was realized by computing the permeability tensor of pore structure using the Lattice Boltzmann method (LBM), and the pore structure anisotropy was characterized by the eigenvalues and eigenvectors of the permeability tensor. The pore structure anisotropy obtained by the method proposed in this paper was validated by the pore structure geometrical morphology.

参考文献

[1] EIA. Annual Energy Outlook[R/OL]. (2013-1-21)[2019-4-20]. https:// www.eia.gov/pressroom/presentations/sieminski_01212013.pdf.
[2] DONG Z, HOLDITCH S A, AYERS W B, et al.Probabilistic estimate of global coalbed methane recoverable resources[J]. SPE Economics & Management, 2015, 7(4): 1-9.
[3] VAN KREVELEN D W. Coal-typology, chemistry, physics, constitution[M]. Amsterdam: Elsevier Science Publishing Company Inc, 1993.
[4] MAHAMUD M M, NOVO M F.The use of fractal analysis in the textural characterization of coals[J]. Fuel, 2008, 87(2): 222-231.
[5] ROOTARE H M, PRENZLOW C F.Surface areas from mercury porosimeter measurements[J]. Journal of Physical Chemistry, 2002, 71(8): 2733-2736.
[6] RODRIGUES C F, SOUSA M J L D. The measurement of coal porosity with different gases[J]. International Journal of Coal Geology, 2002, 48(3/4): 245-251.
[7] BARRETT E P, JOYNER L G, HALENDA P P.The determination of pore volume and area distributions in porous substances[J]. Journal of the American Chemical Society, 1951, 73(1): 373-380.
[8] TERZYK A P, GAUDEN P A, KOWALCZYK P.What kind of pore size distribution is assumed in the Dubinin-Astakhov adsorption isotherm equation?[J]. Carbon, 2002, 40(15): 2879-2886.
[9] DOMBROWSKI R J, LASTOSKIE C M, HYDUKE D R.The Horvath-Kawazoe method revisited[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2001, 187(1): 23-39.
[10] SAITO A, FOLEY H C.Curvature and parametric sensitivity in models for adsorption in micropores[J]. Aiche Journal, 2010, 37(3): 429-436.
[11] SHAO X H, ZHANG X R, WANG W C.Comparison of density functional theory and molecular simulation methods for pore size distribution of mesoporous materials[J]. Acta Physico-chimica Sinica, 2003, 19(6): 538-542.
[12] SAKDINAWAT A, ATTWOOD D.Nanoscale X-ray imaging[J]. Nature Photonics, 2009, 4(12): 840-848.
[13] BOSSA N, CHAURAND P, VICENTE J, et al.Micro- and nano-X-ray computed - tomography: A step forward in the characterization of the pore network of a leached cement paste[J]. Cement & Concrete Research, 2015, 67: 138-147.
[14] 李志宏, 吴忠华. 我国同步辐射小角X光散射装置[J]. 光散射学报, 2003, 15(3): 213-216.
LI Zhihong, WU Zhonghua.Facility of Chinese synchrotron radiation small angle X- Ray scattering[J]. Chinese Journal of Light Scattering, 2003, 15(3): 213-216.
[15] OKOLO G N, EVERSON R C, NEOMAGUS H W J P, et al. Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques[J]. Fuel, 2015, 141: 293-304.
[16] RADLINSKI A P, MASTALERZ M, HINDE A L, et al.Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal[J]. International Journal of Coal Geology, 2004, 59(3): 245-271.
[17] ZHAO Y, LIU S, ELSWORTH D, et al.Pore structure characterization of coal by synchrotron small-angle X-ray scattering and transmission electron microscopy[J]. Energy & Fuels, 2014, 28(6): 3704-3711.
[18] LUO L, LIU J, ZHANG Y, et al.Application of small angle X-ray scattering in evaluation of pore structure of superfine pulverized coal/char[J]. Fuel, 2016, 185: 190-198.
[19] 王博文, 李伟. 基于小角X射线散射的灰分对煤孔隙结构的影响研究[J]. 煤矿安全, 2017, 48(1): 144-148.
WANG Bowen, LI Wei.Effect of ash content on coal pore structure based on small angle X-ray scattering[J]. Safety in Coal Mines, 2017, 48(1): 144-148.
[20] ZHAO Y X, SUN Y F, LIU S M, et al.Pore structure characterization of coal by synchrotron radiation nano-CT[J]. Fuel, 2018, 215: 102-110.
[21] GAMSON P, BEAMISH B, JOHNSON D.Coal microstructure and secondary mineralization: Their effect on methane recovery[J]. Geological Society of London Special Publications, 1996, 109(1): 165-179.
[22] GAMSON P, BEAMISH B, JOHNSON D.Coal microstructure and micropermeability and their effects on natural gas recovery[J]. Fuel, 1993, 72(1): 87-99.
[23] HARPALANI S, ZHAO X.Microstructure of coal and its influence on flow of gas[J]. Energy Sources, 2007, 13(2): 229-242.
[24] TANG X, JIANG Z, LI Z, et al.The effect of the variation in material composition on the heterogeneous pore structure of high-maturity shale of the Silurian Longmaxi formation in the southeastern Sichuan Basin, China[J]. Journal of Natural Gas Science & Engineering, 2015, 23: 464-473.
[25] WAN Y, PAN Z, TANG S, et al.An experimental investigation of diffusivity and porosity anisotropy of a Chinese gas shale[J]. Journal of Natural Gas Science & Engineering, 2015, 23: 70-79.
[26] HU Q, GAO X, GAO Z, et al.Pore Accessibility and Connectivity of Mineral and Kerogen Phases for Shales[R]. Denver, USA: Proceedings of the Unconventional Resources Technology Conference, 2014.
[27] WANG Z, JIN X, WANG X, et al.Pore-scale geometry effects on gas permeability in shale[J]. Journal of Natural Gas Science & Engineering, 2016, 34: 948-957.
[28] KNOWLES J, ARMATAS G, HUDSON M, et al.Pore anisotropy and microporosity in nanostructured mesoporous solids[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2006, 22(1): 410-418.
[29] POMONIS P J, ARMATAS G S.A method for the estimation of pore anisotropy in porous solids[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2004, 20(16): 6719.
[30] BULTREYS T, BOEVER W D, CNUDDE V.Imaging and image-based fluid transport modeling at the pore scale in geological materials: A practical introduction to the current state-of-the-art[J]. Earth-Science Reviews, 2016, 155: 93-128.
[31] RAMSTAD T, OREN P E, BAKKE S.Simulation of two phase flow in reservoir rocks using a lattice boltzmann method[J]. SPE Journal, 2010, 15(4): 917-927.
[32] ICARDI M, BOCCARDO G, MARCHISIO D L, et al.Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media[J]. Physical Review E, 2014, 90(1): 13032.
[33] KOROTEEV D, DINARIEV O, EVSEEV N, et al.Direct hydrodynamic simulation of multiphase flow in porous rock[J]. Petrophysics, 2014, 55(4): 294-303.
[34] ASTORINO M, SAGREDO J B, QUARTERONI A.A modular lattice boltzmann solver for GPU computing processors[J]. Sema Journal, 2012, 59(1): 53-78.
[35] BLUNT M J.Flow in porous media-pore-network models and multiphase flow[J]. Current Opinion in Colloid & Interface Science, 2001, 6(3): 197-207.
[36] YOUSSEF S, ROSENBERG E, GLAND N, et al.High Resolution CT and Pore-Network Models To Assess Petrophysical Properties Of Homogeneous and Heterogeneous Carbonates[R]. Abu Dhabi, UAE: SPE/EAGE Reservoir Characterization and Simulation Conference, 2007.
[37] Astm International.Standard test methods for proximate analysis of the analysis sample of coal and coke by instrumental procedures: ASTM D5142[S]. West Conshohocken: Astm International, 2009.
[38] 国家能源局. 沉积岩中镜质体反射率测定方法: SY/T 5124—2012 [S]. 北京: 石油工业出版社, 2012.
National Energy Administration.Method of determing microscopically the reflectance of vitrinite in sedimentary: SY/T 5124—2012[S]. Beijing: Petroleum Industry Press, 2012.
[39] 国家能源局. 沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法: SY/T 5163—2010[S]. 北京: 石油工业出版社, 2010.
National Energy Administration.Analysis method for clay minerals and ordinary non-clay minerals in sedimentary rocks by the X-ray diffraction: SY/T 5163—2010[S]. Beijing: Petroleum Industry Press, 2010.
[40] 李志宏. SAXS方法及其在胶体和介孔材料研究中的应用[D]. 太原: 中国科学院山西煤炭化学研究所, 2002.
LI Zhihong.SAXS method and its application in colloid and mesoporous material[D]. Taiyuan: Institute of Coal Chemistry Chinese Academy of Science, 2002.
[41] ZHAO Y X, PENG L, LIU S M, et al.Pore structure characterization of shales using synchrotron SAXS and NMR cryoporometry[J]. Marine and Petroleum Geology, 2019, 102:116-125.
[42] WANG S H, ZHANG K, WANG Z L, et al.A user-friendly nano-CT image alignment and 3D reconstruction platform based on LabVIEW[J]. Chinese Physics C, 2015, 39(1): 018001.
[43] WIJNEN P W J G, BEELEN T P M, RUMMENS K P J, et al. Silica gel from water glass: A SAXS study of the formation and ageing of fractal aggregates[J]. Journal of Applied Crystallography, 1991, 24(5): 759-764.
[44] 李振涛. 煤储层孔裂隙演化及对煤层气微观流动的影响[D]. 北京: 中国地质大学(北京), 2018.
LI Zhentao.Evolution of pore-fractures of coal reservoir and its impact on CBM microcosmic flow[D]. Beijing: China University of Geosciences (Beijing), 2018.
[45] 姚艳斌, 刘大锰. 煤储层精细定量表征与综合评价模型[M]. 北京:地质出版社, 2013.
YAO Yanbin, LIU Dameng.Advanced quantitative characterization and comprehensive evaluation model of coalbed methane reservoirs[M]. Beijing: Geological Publishing House, 2013.
[46] SUCCI S.The Lattice Boltzmann Equation[M]. Oxford: Oxford University Press, 2001.
[47] SUN W C, KUHN M R, RUDNICKI J W.A multiscale DEM-LBM analysis on permeability evolutions inside a dilatant shear band[J]. Acta Geotechnica, 2013, 8(5): 465-480.
[48] ZHAO Y X, SUN Y F, LIU S M, et al.Pore structure characterization of coal by NMR cryoporometry[J]. Fuel, 2017, 190: 359-369.
文章导航

/