新能源新领域

致密油储集层高效缝网改造与提高采收率一体化技术

  • 周福建 ,
  • 苏航 ,
  • 梁星原 ,
  • 孟磊峰 ,
  • 袁立山 ,
  • 李秀辉 ,
  • 梁天博
展开
  • 1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京102249;
    2. 中国石油大学(北京)教育部重点实验室,北京102249;
    3. 西部钻探工程有限公司井下作业公司,新疆克拉玛依834000
周福建(1966-),男,江苏沭阳人,博士,中国石油大学(北京)非常规天然气研究院教授,主要从事储集层改造与储集层保护方面的研究工作。地址:北京市昌平区府学路18号,中国石油大学(北京)非常规天然气研究院,邮政编码:102249。E-mail: zhoufj@cup.edu.cn

收稿日期: 2019-01-25

  修回日期: 2019-07-11

  网络出版日期: 2019-09-17

Integrated hydraulic fracturing techniques to enhance oil recovery from tight rocks

  • ZHOU Fujian ,
  • SU Hang ,
  • LIANG Xingyuan ,
  • MENG Leifeng ,
  • YUAN Lishan ,
  • LI Xiuhui ,
  • LIANG Tianbo
Expand
  • 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China;
    2. MOE Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing 102249, China;
    3. CNPC Xibu Drilling Engineering Company, Karamay 834000, China

Received date: 2019-01-25

  Revised date: 2019-07-11

  Online published: 2019-09-17

Supported by

国家“十三五”科技重大专项(2016ZX05051-03,2016ZX05030-05); 国家自然科学创新研究群体项目(51521063); 中国石油科技创新基金(2018D-5007-0205); 中国石油大学(北京)引进人才科研启动基金(2462017YJRC031)

摘要

基于对提高致密油储集层压裂改造效果面临挑战的分析,提出高效缝网改造与提高采收率一体化技术。通过调研发现,形成密集有效的裂缝网络以及提高压裂液的渗吸效果是目前所面临的两大挑战。针对这两大挑战,通过室内实验模拟与现场应用效果评估,提出一套适用于中国致密油开发的高效缝网改造与提高采收率一体化技术:①利用暂堵剂实现段内多簇改造,形成密集裂缝网络,可以最大化储集层的泄油面积;②利用微支撑剂,在前置液造缝阶段对大量诱导性裂缝进行有效支撑,可以形成有效密集缝网;③利用一种新型的纳米乳液体系(LNF)作为压裂液添加剂,提高油水置换效率,可以高效利用“万方压裂液”实现储集层的增能压裂开发。图8表1参60

本文引用格式

周福建 , 苏航 , 梁星原 , 孟磊峰 , 袁立山 , 李秀辉 , 梁天博 . 致密油储集层高效缝网改造与提高采收率一体化技术[J]. 石油勘探与开发, 2019 , 46(5) : 1007 -1014 . DOI: 10.11698/PED.2019.05.20

Abstract

Two main challenges exist in enhancing oil recovery rate from tight oil reservoirs, namely how to create an effective complicated fracture network and how to enhance the imbibition effect of fracturing fluid. In response to the challenges, through modeling experiment in laboratory and evaluation of field application results, a set of integrated efficient fracturing and enhanced oil recovery (EOR) techniques suitable for tight oil development in China has been proposed. (1) Fracturing with temporary plugging agents to realize stimulation in multiple clusters, to form dense fracture network, and thus maximizing the drainage area; (2) Supporting induced fractures with micro-sized proppants during the prepad fluid fracture-making stage, to generate dense fracture network with high conductivity; (3) Using the liquid nanofluid as a fracturing fluid additive to increase oil-water displacement ratio and take advantage of the massive injected fracturing fluid and maximize the oil production after hydraulic fracturing.

参考文献

[1] EIA. Tight oil remains the leading source of future U.S. crude oil production[EB/OL]. (2018-02-22)[2018-11-10]. https://www.eia.gov/ todayinenergy/detail.php?id=35052.
[2] 胡素云, 朱如凯, 吴松涛, 等. 中国陆相致密油效益勘探开发[J]. 石油勘探与开发, 2018, 45(4): 737-748.
HU Suyun, ZHU Rukai, WU Songtao, et al.Exploration and development of continental tight oil in China[J]. Petroleum Exploration and Development, 2018, 45(4): 737-748.
[3] 贾承造. 论非常规油气对经典石油天然气地质学理论的突破及意义[J]. 石油勘探与开发, 2017, 44(1): 1-11.
JIA Chengzao.Breakthrough and significance of unconventional oil and gas to classical petroleum geology theory[J]. Petroleum Exploration and Development, 2017, 44(1): 1-11.
[4] EIA. Trends in U.S. oil and natural gas upstream costs.[R] Virginia: U.S.Energy Information Administration, 2016.
[5] 王红军, 马锋, 童晓光, 等. 全球非常规油气资源评价[J]. 石油勘探与开发, 2016, 43(6): 850-862.
WANG Hongjun, MA Feng, TONG Xiaoguang, et al.Assessment of global unconventional oil and gas resources[J]. Petroleum Exploration and Development, 2016, 43(6): 850-862.
[6] HU Y, WEIJERMARS R, ZUO L, et al.Benchmarking EUR estimates for hydraulically fractured wells with and without fracture hits using various DCA methods[J]. Journal of Petroleum Science and Engineering, 2018, 162: 617-632.
[7] DOE. Modern shale gas development in the United States: A primer[R]. Washington: U.S. Department of Energy, 2009.
[8] PATZEK T W, MALE F, MARDER M.Gas production in the Barnett Shale obeys a simple scaling theory[J]. Proceedings of the National Academy of Sciences, 2013, 110(49): 19731-19736.
[9] MALE F, MARDER M P, BROWNING J, et al.Marcellus wells’ ultimate production accurately predicted from initial production[R].SPE 180234, 2016.
[10] MILLER C K, WATERS G A, RYLANDER E I.Evaluation of production log data from horizontal wells drilled in organic shales[R]. SPE 144326, 2011.
[11] ZHU D, HILL D, ZHANG S.Using temperature measurements from production logging/downhole sensors to diagnose multistage fractured well flow profile[D]. Texas: Texas A&M University, 2018.
[12] ROUSSEL N P, SHARMA M M.Optimizing fracture spacing and sequencing in horizontal-well fracturing[J]. SPE Production & Operations, 2011, 26(2): 173-184.
[13] MANCHANDA R, SHARMA M M.Impact of completion design on fracture complexity in horizontal shale wells[J]. SPE Drilling & Completion, 2014, 29(1): 78-87.
[14] WU K, OLSON J E.Mechanisms of simultaneous hydraulic-fracture propagation from multiple perforation clusters in horizontal wells[J]. SPE Journal, 2016, 21(3): 1000-1008.
[15] PARSEGOV S G, NIU G, SCHECHTER D S, et al.Benefits of engineering fracture design: Lessons learned from underperformers in the Midland Basin[R]. SPE 189859, 2018.
[16] SHARMA M M, MANCHANDA R.The role of induced un-propped (IU) fractures in unconventional oil and gas wells[R]. SPE 174946, 2015.
[17] WU W, ZHOU J, KAKKAR P, et al.An experimental study on conductivity of unpropped fractures in preserved shales[J]. SPE Production & Operations, 2018, 34(2): 280-296.
[18] EIA. U.S. crude oil production efficiency continues to improve[EB/OL]. (2018-05-01)[2018-11-10]. https://www.eia.gov/ todayinenergy/detail.php?id=36012.
[19] LIANG T B, YANG Z, ZHOU F J, et al.A new approach to predict field-scale performance of friction reducer based on laboratory measurements[J]. Journal of Petroleum Science and Engineering, 2017, 159: 927-933.
[20] LIANG T B, LUO X, NGUYEN Q, et al.Computed-tomography measurements of water block in low-permeability rocks: Scaling and remedying production impairment[J]. SPE Journal, 2018, 23(3): 762-771.
[21] ANDERSON W.Wettability literature survey (Part 2): Wettability measurement[J]. Journal of Petroleum Technology, 1986, 38(11): 1246-1262.
[22] WU Y, SHULER P J, BLANCO M, et al.An experimental study of wetting behavior and surfactant EOR in carbonates with model compounds[J]. SPE Journal, 2008, 13(1): 26-34.
[23] HIRASAKI G, MILLER C A, PUERTO M.Recent advances in surfactant EOR[J]. SPE Journal, 2011, 16(4): 889-907.
[24] CHEN P, MOHANTY K.Surfactant-mediated spontaneous imbibition in carbonate rocks at harsh reservoir conditions[J]. SPE Journal, 2013, 18(1): 124-133.
[25] WANG D, BUTLER R, ZHANG J, et al.Wettability survey in Bakken Shale with surfactant-formulation imbibition[J]. SPE Reservoir Evaluation & Engineering, 2012, 15(6): 695-705.
[26] LI H, DAWSON M, STANDNES D C.Multi-scale rock characterization and modeling for surfactant EOR in the Bakken[R]. SPE 175960, 2015.
[27] MOHANTY K K, TONG S, MILLER C, et al.Improved hydrocarbon recovery using mixtures of energizing chemicals in unconventional reservoirs[R]. SPE 187240, 2017.
[28] ALVAREZ J O,SAPUTRA I W R, SCHECHTER D S. The impact of surfactant imbibition and adsorption for improving oil recovery in the Wolfcamp and Eagle Ford Reservoirs[J]. SPE Journal, 2018, 23(6): 2103-2117.
[29] ZHOU F J, YANG X, XIONG C, et al.Application and study of fine-silty sand control technique for unconsolidation Quaternary sand gas reservoir, Sebei Qinghai[R]. SPE 86464, 2004.
[30] ZHOU F J, LIU Y, YANG X, et al.Case study: YM204 obtained high petroleum production by acid fracture treatment combining fluid diversion and fracture reorientation[R]. SPE 121827, 2009.
[31] LIANG T B, ZHOU F J, SHI Y, et al.Evaluation and optimization of degradable-fiber-assisted slurry for fracturing thick and tight formation with high stress[J]. Journal of Petroleum Science and Engineering, 2018, 165: 81-89.
[32] LIANG Y, NING Y, LIAO L, et al.Chapter fourteen: Special focus on produced water in oil and gas fields: Origin, management, and reinjection practice[M]//YUAN B, WOOD D A. Formation damage during improved oil recovery. Amsterdam: Elsevier, 2018: 515-586.
[33] YANG C, ZHOU F J, FENG W, et al.Plugging mechanism of fibers and particulates in hydraulic fracture[J]. Journal of Petroleum Science and Engineering, 2019, 176: 396-402.
[34] JIN X, SHAH S N, ROEGIERS J-C, et al.Fracability evaluation in shale reservoirs: An integrated petrophysics and geomechanics approach[J]. SPE Journal, 2014, 20(3): 518-526.
[35] YUAN J, ZHOU J, LIU S, et al.An improved fracability-evaluation method for shale reservoirs based on new fracture toughness- prediction models[J]. SPE Journal, 2017, 22(5): 1704-1713.
[36] WANG D B, ZHOU F J, GE H K, et al.An experimental study on the mechanism of degradable fiber-assisted diverting fracturing and its influencing factors[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 260-273.
[37] WANG B, ZHOU F J, WANG D, et al.Numerical simulation on near-wellbore temporary plugging and diverting during refracturing using XFEM-Based CZM[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 368-381.
[38] WANG B, ZHOU F J, ZOU Y, et al.Effects of previously created fracture on the initiation and growth of subsequent fracture during TPMSF[J]. Engineering Fracture Mechanics, 2018, 200: 312-326.
[39] WANG B, ZHOU F J, ZOU Y, et al.Quantitative investigation of fracture interaction by evaluating fracture curvature during temporarily plugging staged fracturing[J]. Journal of Petroleum Science and Engineering, 2019, 172: 559-571.
[40] VAN DOMELEN M S.A practical guide to modern diversion technology[R]. SPE 185120, 2017.
[41] TANGUAY C,SMITH M. Microproppants unlock potential of secondary fractures[EB/OL]. (2018-01-03)[2018-11-04]. https://www.epmag.com/ microproppants-unlock-potential-secondary-fractures-1676546.
[42] DAHL J, NGUYEN P, DUSTERHOFT R, et al.Application of micro-proppant to enhance well production in unconventional reservoirs: Laboratory and field results[R]. SPE 174060, 2015.
[43] LI C, SPURR N, ROYCE T N.Post-fracturing production performance of small sized proppant in major unconventional formations[R]. SPE 191407, 2018.
[44] GREEN J, DEWENDT A, TERRACINA J, et al.First proppant designed to decrease water production[R]. SPE 191394, 2018.
[45] BENNETZEN M V, MOGENSEN K.Novel applications of nanoparticles for future enhanced oil recovery[R]. SPE 17857, 2014.
[46] CARPENTER C.A study of wettability-alteration methods with nanomaterials application[J]. Journal of Petroleum Technology, 2015, 67(12): 74-75.
[47] EL-DIASTY A I, ALY A M. Understanding the mechanism of nanoparticles applications in enhanced oil recovery[R]. SPE 175806, 2015.
[48] ROUSTAEI A.An evaluation of spontaneous imbibition of water into oil-wet carbonate reservoir cores using nanofluid[J]. Petrophysics, 2014, 55(1): 31-37.
[49] ALASKAR M N, AMES M F, CONNOR S T, et al.Nanoparticle and microparticle flow in porous and fractured media: An experimental study[J]. SPE Journal, 2012, 17(4): 1160-1171.
[50] ROSTAMI A, NGUYEN D T, NASR-EL-DIN H A. Laboratory studies on fluid-recovery enhancement and mitigation of phase trapping by use of microemulsion in gas sandstone formations[J]. SPE Production & Operations, 2016, 31(2): 120-132.
[51] CHAMPAGNE L M, ZELENEV A S, PENNY G S, et al.Critical assessment of microemulsion technology for enhancing fluid recovery from tight gas formations and propped fractures[R]. SPE 144095, 2011.
[52] PENNY G S, ZELENEV A, LETT N, et al.Nano surfactant system improves post frac oil and gas recovery in hydrocarbon rich gas reservoirs[R]. SPE 154308, 2012.
[53] LIANG T B, LI Q, LIANG X, et al.Evaluation of liquid nanofluid as fracturing fluid additive on enhanced oil recovery from low-permeability reservoirs[J]. Journal of Petroleum Science and Engineering, 2018, 168: 390-399.
[54] AL-BAZALI T M. Experimental study of the membrane behavior of shale during interaction with water-based and oil-based muds[D].Austin, Texas: The University of Texas at Austin, 2005.
[55] JUNG C M.Measurement of fluid properties in organic-rich shales[D]. Austin,Texas: The University of Texas at Austin, 2015.
[56] LIANG T B, ZHOU F J, LU J, et al.Evaluation of wettability alteration and IFT reduction on mitigating water blocking for low-permeability oil-wet rocks after hydraulic fracturing[J]. Fuel, 2017, 209: 650-660.
[57] CHEN M, DAI J, LIU X, et al.Differences in the fluid characteristics between spontaneous imbibition and drainage in tight sandstone cores from nuclear magnetic resonance[J]. Energy & Fuels, 2018, 32(10): 10333-10343.
[58] LIANG Y, WEN B, HESSE M A, et al.Effect of dispersion on solutal convection in porous media[J]. Geophysical Research Letters, 2018, 45(18): 9690-9698.
[59] LIANG T B, ACHOUR S H, LONGORIA R A, et al.Flow physics of how surfactants can reduce water blocking caused by hydraulic fracturing in low permeability reservoirs[J]. Journal of Petroleum Science and Engineering, 2017, 157: 631-642.
[60] LIANG T B, LONGORIA R A, LU J, et al.Enhancing hydrocarbon permeability after hydraulic fracturing: Laboratory evaluations of shut-ins and surfactant additives[J]. SPE Journal, 2017, 22(4): 1011-1023.
文章导航

/