[1] EIA. Tight oil remains the leading source of future U.S. crude oil production[EB/OL]. (2018-02-22)[2018-11-10]. https://www.eia.gov/ todayinenergy/detail.php?id=35052.
[2] 胡素云, 朱如凯, 吴松涛, 等. 中国陆相致密油效益勘探开发[J]. 石油勘探与开发, 2018, 45(4): 737-748.
HU Suyun, ZHU Rukai, WU Songtao, et al.Exploration and development of continental tight oil in China[J]. Petroleum Exploration and Development, 2018, 45(4): 737-748.
[3] 贾承造. 论非常规油气对经典石油天然气地质学理论的突破及意义[J]. 石油勘探与开发, 2017, 44(1): 1-11.
JIA Chengzao.Breakthrough and significance of unconventional oil and gas to classical petroleum geology theory[J]. Petroleum Exploration and Development, 2017, 44(1): 1-11.
[4] EIA. Trends in U.S. oil and natural gas upstream costs.[R] Virginia: U.S.Energy Information Administration, 2016.
[5] 王红军, 马锋, 童晓光, 等. 全球非常规油气资源评价[J]. 石油勘探与开发, 2016, 43(6): 850-862.
WANG Hongjun, MA Feng, TONG Xiaoguang, et al.Assessment of global unconventional oil and gas resources[J]. Petroleum Exploration and Development, 2016, 43(6): 850-862.
[6] HU Y, WEIJERMARS R, ZUO L, et al.Benchmarking EUR estimates for hydraulically fractured wells with and without fracture hits using various DCA methods[J]. Journal of Petroleum Science and Engineering, 2018, 162: 617-632.
[7] DOE. Modern shale gas development in the United States: A primer[R]. Washington: U.S. Department of Energy, 2009.
[8] PATZEK T W, MALE F, MARDER M.Gas production in the Barnett Shale obeys a simple scaling theory[J]. Proceedings of the National Academy of Sciences, 2013, 110(49): 19731-19736.
[9] MALE F, MARDER M P, BROWNING J, et al.Marcellus wells’ ultimate production accurately predicted from initial production[R].SPE 180234, 2016.
[10] MILLER C K, WATERS G A, RYLANDER E I.Evaluation of production log data from horizontal wells drilled in organic shales[R]. SPE 144326, 2011.
[11] ZHU D, HILL D, ZHANG S.Using temperature measurements from production logging/downhole sensors to diagnose multistage fractured well flow profile[D]. Texas: Texas A&M University, 2018.
[12] ROUSSEL N P, SHARMA M M.Optimizing fracture spacing and sequencing in horizontal-well fracturing[J]. SPE Production & Operations, 2011, 26(2): 173-184.
[13] MANCHANDA R, SHARMA M M.Impact of completion design on fracture complexity in horizontal shale wells[J]. SPE Drilling & Completion, 2014, 29(1): 78-87.
[14] WU K, OLSON J E.Mechanisms of simultaneous hydraulic-fracture propagation from multiple perforation clusters in horizontal wells[J]. SPE Journal, 2016, 21(3): 1000-1008.
[15] PARSEGOV S G, NIU G, SCHECHTER D S, et al.Benefits of engineering fracture design: Lessons learned from underperformers in the Midland Basin[R]. SPE 189859, 2018.
[16] SHARMA M M, MANCHANDA R.The role of induced un-propped (IU) fractures in unconventional oil and gas wells[R]. SPE 174946, 2015.
[17] WU W, ZHOU J, KAKKAR P, et al.An experimental study on conductivity of unpropped fractures in preserved shales[J]. SPE Production & Operations, 2018, 34(2): 280-296.
[18] EIA. U.S. crude oil production efficiency continues to improve[EB/OL]. (2018-05-01)[2018-11-10]. https://www.eia.gov/ todayinenergy/detail.php?id=36012.
[19] LIANG T B, YANG Z, ZHOU F J, et al.A new approach to predict field-scale performance of friction reducer based on laboratory measurements[J]. Journal of Petroleum Science and Engineering, 2017, 159: 927-933.
[20] LIANG T B, LUO X, NGUYEN Q, et al.Computed-tomography measurements of water block in low-permeability rocks: Scaling and remedying production impairment[J]. SPE Journal, 2018, 23(3): 762-771.
[21] ANDERSON W.Wettability literature survey (Part 2): Wettability measurement[J]. Journal of Petroleum Technology, 1986, 38(11): 1246-1262.
[22] WU Y, SHULER P J, BLANCO M, et al.An experimental study of wetting behavior and surfactant EOR in carbonates with model compounds[J]. SPE Journal, 2008, 13(1): 26-34.
[23] HIRASAKI G, MILLER C A, PUERTO M.Recent advances in surfactant EOR[J]. SPE Journal, 2011, 16(4): 889-907.
[24] CHEN P, MOHANTY K.Surfactant-mediated spontaneous imbibition in carbonate rocks at harsh reservoir conditions[J]. SPE Journal, 2013, 18(1): 124-133.
[25] WANG D, BUTLER R, ZHANG J, et al.Wettability survey in Bakken Shale with surfactant-formulation imbibition[J]. SPE Reservoir Evaluation & Engineering, 2012, 15(6): 695-705.
[26] LI H, DAWSON M, STANDNES D C.Multi-scale rock characterization and modeling for surfactant EOR in the Bakken[R]. SPE 175960, 2015.
[27] MOHANTY K K, TONG S, MILLER C, et al.Improved hydrocarbon recovery using mixtures of energizing chemicals in unconventional reservoirs[R]. SPE 187240, 2017.
[28] ALVAREZ J O,SAPUTRA I W R, SCHECHTER D S. The impact of surfactant imbibition and adsorption for improving oil recovery in the Wolfcamp and Eagle Ford Reservoirs[J]. SPE Journal, 2018, 23(6): 2103-2117.
[29] ZHOU F J, YANG X, XIONG C, et al.Application and study of fine-silty sand control technique for unconsolidation Quaternary sand gas reservoir, Sebei Qinghai[R]. SPE 86464, 2004.
[30] ZHOU F J, LIU Y, YANG X, et al.Case study: YM204 obtained high petroleum production by acid fracture treatment combining fluid diversion and fracture reorientation[R]. SPE 121827, 2009.
[31] LIANG T B, ZHOU F J, SHI Y, et al.Evaluation and optimization of degradable-fiber-assisted slurry for fracturing thick and tight formation with high stress[J]. Journal of Petroleum Science and Engineering, 2018, 165: 81-89.
[32] LIANG Y, NING Y, LIAO L, et al.Chapter fourteen: Special focus on produced water in oil and gas fields: Origin, management, and reinjection practice[M]//YUAN B, WOOD D A. Formation damage during improved oil recovery. Amsterdam: Elsevier, 2018: 515-586.
[33] YANG C, ZHOU F J, FENG W, et al.Plugging mechanism of fibers and particulates in hydraulic fracture[J]. Journal of Petroleum Science and Engineering, 2019, 176: 396-402.
[34] JIN X, SHAH S N, ROEGIERS J-C, et al.Fracability evaluation in shale reservoirs: An integrated petrophysics and geomechanics approach[J]. SPE Journal, 2014, 20(3): 518-526.
[35] YUAN J, ZHOU J, LIU S, et al.An improved fracability-evaluation method for shale reservoirs based on new fracture toughness- prediction models[J]. SPE Journal, 2017, 22(5): 1704-1713.
[36] WANG D B, ZHOU F J, GE H K, et al.An experimental study on the mechanism of degradable fiber-assisted diverting fracturing and its influencing factors[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 260-273.
[37] WANG B, ZHOU F J, WANG D, et al.Numerical simulation on near-wellbore temporary plugging and diverting during refracturing using XFEM-Based CZM[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 368-381.
[38] WANG B, ZHOU F J, ZOU Y, et al.Effects of previously created fracture on the initiation and growth of subsequent fracture during TPMSF[J]. Engineering Fracture Mechanics, 2018, 200: 312-326.
[39] WANG B, ZHOU F J, ZOU Y, et al.Quantitative investigation of fracture interaction by evaluating fracture curvature during temporarily plugging staged fracturing[J]. Journal of Petroleum Science and Engineering, 2019, 172: 559-571.
[40] VAN DOMELEN M S.A practical guide to modern diversion technology[R]. SPE 185120, 2017.
[41] TANGUAY C,SMITH M. Microproppants unlock potential of secondary fractures[EB/OL]. (2018-01-03)[2018-11-04]. https://www.epmag.com/ microproppants-unlock-potential-secondary-fractures-1676546.
[42] DAHL J, NGUYEN P, DUSTERHOFT R, et al.Application of micro-proppant to enhance well production in unconventional reservoirs: Laboratory and field results[R]. SPE 174060, 2015.
[43] LI C, SPURR N, ROYCE T N.Post-fracturing production performance of small sized proppant in major unconventional formations[R]. SPE 191407, 2018.
[44] GREEN J, DEWENDT A, TERRACINA J, et al.First proppant designed to decrease water production[R]. SPE 191394, 2018.
[45] BENNETZEN M V, MOGENSEN K.Novel applications of nanoparticles for future enhanced oil recovery[R]. SPE 17857, 2014.
[46] CARPENTER C.A study of wettability-alteration methods with nanomaterials application[J]. Journal of Petroleum Technology, 2015, 67(12): 74-75.
[47] EL-DIASTY A I, ALY A M. Understanding the mechanism of nanoparticles applications in enhanced oil recovery[R]. SPE 175806, 2015.
[48] ROUSTAEI A.An evaluation of spontaneous imbibition of water into oil-wet carbonate reservoir cores using nanofluid[J]. Petrophysics, 2014, 55(1): 31-37.
[49] ALASKAR M N, AMES M F, CONNOR S T, et al.Nanoparticle and microparticle flow in porous and fractured media: An experimental study[J]. SPE Journal, 2012, 17(4): 1160-1171.
[50] ROSTAMI A, NGUYEN D T, NASR-EL-DIN H A. Laboratory studies on fluid-recovery enhancement and mitigation of phase trapping by use of microemulsion in gas sandstone formations[J]. SPE Production & Operations, 2016, 31(2): 120-132.
[51] CHAMPAGNE L M, ZELENEV A S, PENNY G S, et al.Critical assessment of microemulsion technology for enhancing fluid recovery from tight gas formations and propped fractures[R]. SPE 144095, 2011.
[52] PENNY G S, ZELENEV A, LETT N, et al.Nano surfactant system improves post frac oil and gas recovery in hydrocarbon rich gas reservoirs[R]. SPE 154308, 2012.
[53] LIANG T B, LI Q, LIANG X, et al.Evaluation of liquid nanofluid as fracturing fluid additive on enhanced oil recovery from low-permeability reservoirs[J]. Journal of Petroleum Science and Engineering, 2018, 168: 390-399.
[54] AL-BAZALI T M. Experimental study of the membrane behavior of shale during interaction with water-based and oil-based muds[D].Austin, Texas: The University of Texas at Austin, 2005.
[55] JUNG C M.Measurement of fluid properties in organic-rich shales[D]. Austin,Texas: The University of Texas at Austin, 2015.
[56] LIANG T B, ZHOU F J, LU J, et al.Evaluation of wettability alteration and IFT reduction on mitigating water blocking for low-permeability oil-wet rocks after hydraulic fracturing[J]. Fuel, 2017, 209: 650-660.
[57] CHEN M, DAI J, LIU X, et al.Differences in the fluid characteristics between spontaneous imbibition and drainage in tight sandstone cores from nuclear magnetic resonance[J]. Energy & Fuels, 2018, 32(10): 10333-10343.
[58] LIANG Y, WEN B, HESSE M A, et al.Effect of dispersion on solutal convection in porous media[J]. Geophysical Research Letters, 2018, 45(18): 9690-9698.
[59] LIANG T B, ACHOUR S H, LONGORIA R A, et al.Flow physics of how surfactants can reduce water blocking caused by hydraulic fracturing in low permeability reservoirs[J]. Journal of Petroleum Science and Engineering, 2017, 157: 631-642.
[60] LIANG T B, LONGORIA R A, LU J, et al.Enhancing hydrocarbon permeability after hydraulic fracturing: Laboratory evaluations of shut-ins and surfactant additives[J]. SPE Journal, 2017, 22(4): 1011-1023.