油气田开发

油湿多孔介质中Winsor Ⅰ型表面活性剂体系特征及渗吸机理

  • 于馥玮 ,
  • 姜汉桥 ,
  • 范桢 ,
  • 徐飞 ,
  • 苏航 ,
  • 成宝洋 ,
  • 刘仁静 ,
  • 李俊键
展开
  • 1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249;
    2. 中国石化国际石油勘探开发有限公司,北京 100029
于馥玮(1993-),男,山东烟台人,中国石油大学(北京)石油工程学院在读博士,主要从事油气渗流机理及提高采收率方面的研究工作。地址:北京市昌平区府学路18号,中国石油大学石油工程学院,邮政编码:102249。E-mail: 2017312045@student.cup.edu.cn

收稿日期: 2018-07-14

  修回日期: 2019-07-05

  网络出版日期: 2019-09-17

Features and imbibition mechanisms of WinsorⅠtype surfactant solution in oil-wet porous media

  • YU Fuwei ,
  • JIANG Hanqiao ,
  • FAN Zhen ,
  • XU Fei ,
  • SU Hang ,
  • CHENG Baoyang ,
  • LIU Rengjing ,
  • LI Junjian
Expand
  • 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China;
    2. SINOPEC International Petroleum Exploration & Production Corporation, Beijing 100029, China;

Received date: 2018-07-14

  Revised date: 2019-07-05

  Online published: 2019-09-17

Supported by

国家科技重大专项(2017ZX05009-005-003,2016ZX05010006-003-002)

摘要

通过盐度扫描实验确定了阴离子表面活性剂所形成的微乳液的相变行为与NaCl浓度的相关关系;通过微流控实验研究了Winsor Ⅰ型表面活性剂体系(简称WⅠ体系)的润湿性特征;在此基础上,利用微流控实验剖析了油湿多孔介质中NaCl浓度对WⅠ体系相变行为及渗吸过程的影响。研究表明,油湿多孔介质中,Winsor Ⅰ型微乳液润湿性与WⅠ体系相近,与其他相相比,润湿性最强;润湿铺展与溶解渗吸残余油是WⅠ体系提高渗吸采收率的主要途径;在形成Winsor Ⅰ型微乳液的盐度条件下,NaCl浓度显著影响WⅠ体系的渗吸机制,NaCl浓度越高,渗吸过程越复杂,渗吸效率越高;同时NaCl浓度显著影响WⅠ体系溶解渗吸残余油的能力,NaCl浓度越高,WⅠ体系对渗吸残余油的溶解越强。图16参23

本文引用格式

于馥玮 , 姜汉桥 , 范桢 , 徐飞 , 苏航 , 成宝洋 , 刘仁静 , 李俊键 . 油湿多孔介质中Winsor Ⅰ型表面活性剂体系特征及渗吸机理[J]. 石油勘探与开发, 2019 , 46(5) : 950 -958 . DOI: 10.11698/PED.2019.05.14

Abstract

The relationship between NaCl concentration and the phase change behavior of microemulsion of anionic surfactant was characterized by the salinity scan experiments. The wettability of Winsor Ⅰ type surfactant solution (WⅠ solution) and the effect of NaCL concentration on phase change behavior of WI solution and imbibition in oil-wet porous media were investigated by microfluidic experiments in this study. The WⅠ solution and Winsor I type microemulsion are similar in wetting phase with stronger wettability than other phases. Two main mechanisms of WⅠ solution enhancing imbibitions recovery in oil wet porous media are the wetting phase drive and residual oil solubilization. Under the salinity condition of Winsor I type microemulsion, the NaCl concentration has strong impact on the imbibition mechanism of WI solution, the higher the NaCl concentration, the complex the imbibition process and the higher the imbibition efficiency will be. The NaCl concentration has strong impact on the solubilization ability to oil of the WI solution, the higher the NaCl concentration, the stronger the solubility of the WI solution to residual oil will be.

参考文献

[1] 贾承造. 论非常规油气对经典石油天然气地质学理论的突破及意义[J]. 石油勘探与开发, 2017, 44(1): 1-11.
JIA Chengzao.Breakthrough and significance of unconventional oil and gas to classical petroleum geological theory[J]. Petroleum Exploration and Development, 2017, 44(1): 1-11.
[2] 杨华, 梁晓伟, 牛小兵, 等. 陆相致密油形成地质条件及富集主控因素: 以鄂尔多斯盆地三叠系延长组7段为例[J]. 石油勘探与开发, 2017, 44(1): 12-20.
YANG Hua, LIANG Xiaowei, NIU Xiaobing, et al.Geological conditions for continental tight oil formation and the main controlling factors for the enrichment: A case of Chang 7 Member, Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(1): 12-20.
[3] 方文超, 姜汉桥, 李俊键, 等. 致密储集层跨尺度耦合渗流数值模拟模型[J]. 石油勘探与开发, 2017, 44(3): 415-422.
FANG Wenchao, JIANG Hanqiao, LI Junjian, et al.A numerical simulation model for multi-scale flow in tight oil reservoirs[J]. Petroleum Exploration and Development, 2017, 44(3): 415-422.
[4] 胡素云, 朱如凯, 吴松涛, 等. 中国陆相致密油效益勘探开发[J]. 石油勘探与开发, 2018, 45(4): 737-748.
HU Suyun, ZHU Rukai, WU Songtao, et al.Profitable exploration and development of continental tight oil in China[J]. Petroleum Exploration and Development, 2018, 45(4): 737-748.
[5] LIANG T B, LI Q G, LIANG X Y, et al.Evaluation of liquid nanofluid as fracturing fluid additive on enhanced oil recovery from low-permeability reservoirs[J]. Journal of Petroleum Science and Engineering, 2018, 168(9): 390-399.
[6] 冯程, 石玉江, 郝建飞, 等. 低渗透复杂润湿性储集层核磁共振特征[J]. 石油勘探与开发, 2017, 44(2): 252-257.
FENG Cheng, SHI Yujiang, HAO Jianfei, et al.Nuclear magnetic resonance features of low-permeability reservoirs with complex wettability[J]. Petroleum Exploration and Development, 2017, 44(2): 252-257.
[7] SHENG J J.What type of surfactants should be used to enhance spontaneous imbibition in shale and tight reservoirs?[J]. Journal of Petroleum Science & Engineering, 2017, 159: 635-643.
[8] 刘合, 金旭, 丁彬. 纳米技术在石油勘探开发领域的应用[J]. 石油勘探与开发, 2016, 43(6): 1014-1021.
LIU He, JIN Xu, DING Bin.Application of nanotechnology in petroleum exploration and development[J]. Petroleum Exploration and Development, 2016, 43(6): 1014-1021.
[9] PU W, WEI B, JIN F, et al.Experimental investigation of CO2, huff-n-puff process for enhancing oil recovery in tight reservoirs[J]. Chemical Engineering Research & Design, 2016, 111: 269-276.
[10] YOU Q, WANG H, ZHANG Y, et al.Experimental study on spontaneous imbibition of recycled fracturing flow-back fluid to enhance oil recovery in low permeability sandstone reservoirs[J]. Journal of Petroleum Science & Engineering, 2018, 166: 375-380.
[11] OLAJIRE A A.Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges[J]. Energy, 2014, 77(C): 963-982.
[12] LIANG T, ZHOU F, LU J.Evaluation of wettability alteration and IFT reduction on mitigating water blocking for low-permeability oil-wet rocks after hydraulic fracturing[J]. Fuel, 2017, 209(23): 650-660.
[13] LIANG T, ACHOUR S H, LONGORIA R A, et al.Flow physics of how surfactants can reduce water blocking caused by hydraulic fracturing in low permeability reservoirs[J]. Journal of Petroleum Science and Engineering, 2017, 157: 631-642.
[14] LI Y, POPE G A, LU J, et al.Scaling of low-interfacial-tension imbibition in oil-wet carbonates[J]. SPE Journal, 2017, 22(5): 1349-1361.
[15] LI Y.Experimental investigation of imbibitions in oil-wet carbonates under low IFT conditions[D]. Texas: University of Texas at Austin, 2016: 110-168.
[16] LIU S, ZHANG D L, YAN W, et al.Favorable attributes of alkali-surfactant-polymer flooding[J]. SPE Journal, 2006, 13(1): 5-16.
[17] FLAATEN A, NGUYEN Q P, POPE G A, et al.A systematic laboratory approach to low-cost, high-performance chemical flooding[J]. SPE Reservoir Evaluation & Engineering, 2009, 12(5): 713-723.
[18] HIRASAKI G J.Recent advances in surfactant EOR[J]. SPE Journal, 2008, 16(4): 889-907.
[19] XU K, LIANG T, ZHU P, et al.A 2.5-D glass micromodel for investigation of multi-phase flow in porous media[J]. Lab on A Chip, 2017, 17(4): 640-646.
[20] XU K, BONNECAZE R, BALHOFF M.Egalitarianism among bubbles in porous media: An Ostwald ripening derived anticoarsening phenomenon[J]. Physical Review Letters, 2017, 119(26): 264502.
[21] TAGAVIFAR M, XU K, JANG S H, et al.Spontaneous and flow-driven interfacial phase change: Dynamics of microemulsion formation at the pore scale[J]. Langmuir, 2017, 33(45): 13077-13086.
[22] HUH C.Equilibrium of a microemulsion that coexists with oil or brine[J]. Society of Petroleum Engineers Journal, 1983, 23(5): 829-847.
[23] REED R L, HEALY R N.Contact angles for equilibrated microemulsion systems[J]. SPE Journal, 1984, 24(3): 342-350.
文章导航

/