油气田开发

纳米驱油剂扩大水驱波及体积机理

  • 雷群 ,
  • 罗健辉 ,
  • 彭宝亮 ,
  • 王小聪 ,
  • 肖沛文 ,
  • 王平美 ,
  • 贺丽鹏 ,
  • 丁彬 ,
  • 耿向飞
展开
  • 1. 中国石油勘探开发研究院,北京 100083;
    2. 中国石油天然气集团有限公司纳米化学重点实验室,北京 100083
雷群(1963-),男,宁夏永宁人,博士,中国石油勘探开发研究院教授级高级工程师,主要从事采油、采气工程技术方面的研究。地址:北京市海淀区学院路 20 号,中国石油勘探开发研究院院办,邮政编码:100083。E-mail: leiqun@petrochina.com.cn

收稿日期: 2018-07-24

  修回日期: 2019-08-22

  网络出版日期: 2019-09-17

Mechanism of expanding swept volume by nano-sized oil-displacement agent

  • LEI Qun ,
  • LUO Jianhui ,
  • PENG Baoliang ,
  • WANG Xiaocong ,
  • XIAO Peiwen ,
  • WANG Pingmei ,
  • HE Lipeng ,
  • DING Bin ,
  • GENG Xiangfei
Expand
  • 1. Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China;
    2. Key Laboratory of Nano Chemistry (KLNC), CNPC, Beijing 100083, China

Received date: 2018-07-24

  Revised date: 2019-08-22

  Online published: 2019-09-17

Supported by

中国石油天然气股份有限公司科学研究与技术开发项目“纳米智能驱油剂研制”课题(2018A-0907)

摘要

采用低场核磁共振(LF-NMR)岩心驱替实验测试iNanoW1.0纳米驱油剂扩大特低渗透岩心水驱波及体积的效果,并通过氧谱核磁共振(17O-NMR)和毛细作用分析实验分析其扩大水驱波及体积的机理。LF-NMR岩心驱替实验结果表明,iNanoW1.0纳米驱油剂能够在常规水驱的基础上增加10%~20%的波及体积,使水分子进入常规水驱不能波及的低渗小孔隙区域。17O-NMR实验和毛细作用分析证实iNanoW1.0纳米粒子能够减弱水分子间的氢键缔合作用,有效改变水分子网络结构,从而使普通水进入常规水驱不能波及的低渗小孔隙区域,增加波及体积;其减弱氢键缔合作用的能力随iNanoW1.0纳米粒子质量分数的增加而增强,且在达到0.1%后趋于稳定。图11表3参24

本文引用格式

雷群 , 罗健辉 , 彭宝亮 , 王小聪 , 肖沛文 , 王平美 , 贺丽鹏 , 丁彬 , 耿向飞 . 纳米驱油剂扩大水驱波及体积机理[J]. 石油勘探与开发, 2019 , 46(5) : 937 -942 . DOI: 10.11698/PED.2019.05.12

Abstract

The effect of expanding swept volume by iNanoW1.0 nanoparticles in ultra-low permeability core was studied by low-field nuclear magnetic resonance (LF-NMR) technology, and the mechanism of expanding swept volume was explained by oxygen spectrum nuclear magnetic resonance (17O-NMR) experiments and capillarity analysis. The results of the LF-NMR experiment show that the nano-sized oil-displacement agent iNanoW1.0 could increase the swept volume by 10%-20% on the basis of conventional water flooding, making water molecules get into the low permeable region with small pores that conventional water flooding could not reach. 17O-NMR technique and capillary analysis proved that iNanoW1.0 nanoparticles could weaken the association of hydrogen bonds between water molecules, effectively change the structure of water molecular clusters, and thus increasing the swept volume in the low permeable region. The ability of weakening association of hydrogen bonds between water molecules of iNanoW1.0 nanoparticles increases with its mass fraction and tends to be stable after the mass fraction of 0.1%.

参考文献

[1] 袁自学,王靖云,李淑珣, 等. 特低渗透注水砂岩油藏采收率确定方法[J]. 石油勘探与开发, 2014, 41(3): 341-348.
YUAN Zixue, WANG Jingyun, LI Shuxun, et al.A new approach to estimating recovery factor for extra-low permeability water-flooding sandstone reservoir[J]. Petroleum Exploration and Development, 2014, 41(3): 341-348.
[2] 窦宏恩, 马世英, 邹存友, 等. 正确认识低和特低渗透油藏启动压力梯度[J]. 中国科学: 地球科学, 2014, 44(8): 1751-1760.
DOU Hong’en, MA Shiying, ZOU Cunyou, et al.Threshold pressure gradient of fluid flow through multi-porous media in low and extra-low permeability reservoir[J]. SCIENCE CHINA Earth Sciences, 2014, 44(8): 1751-1760.
[3] 胡钦红, 张宇翔, 孟祥豪, 等. 渤海湾盆地东营凹陷古近系沙河街组页岩油储集层微米—纳米级孔隙体系表征[J]. 石油勘探与开发, 2017, 44(5): 681-690.
HU Qinhong, ZHANG Yuxiang, MENG Xianghao, et al.Characterization of micro-nano pore networks in shale oil reservoirs of Paleogene Shahejie Formation in Dongying Sag of Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2017, 44(5): 681-690.
[4] 杨仁锋, 姜瑞忠, 刘世华, 等. 特低渗透油藏非线性渗流数值模拟[J]. 石油学报, 2011, 32(2): 299-306.
YANG Renfeng, JIANG Ruizhong, LIU Shihua, et al.Numerical simulation of nonlinear seepage in ultra-low permeability reservoirs[J]. Acta Petrolei Sinica, 2011, 32(2): 299-306.
[5] 胡文瑞, 魏漪, 鲍敬伟. 中国低渗透油气藏开发理论与技术进展[J]. 石油勘探与开发, 2018, 45(4): 646-656.
HU Wenrui, WEI Yi, BAO Jingwei.Development of the theory and technology for low permeability reservoirs in China[J]. Petroleum Exploration and Development, 2018, 45(4): 646-656.
[6] 张昌民, 穆龙新, 宋新民, 等. 油气田开发地质理论与实践[M]. 北京: 石油工业出版社, 2011.
ZHANG Changmin, MU Longxin, SONG Xinmin, et al.Theory and practice of development and geology of oil and gas field[M]. Beijing: Petroleum Industry Press, 2011.
[7] 范天一, 宋新民, 吴淑红, 等. 低渗透油藏水驱动态裂缝数学模型及数值模拟[J]. 石油勘探与开发, 2015, 42(4): 496-501.
FAN Tianyi, SONG Xinmin, WU Shuhong, et al.A mathematical model and numerical simulation of water flood induced dynamic fractures of low permeability reservoirs[J]. Petroleum Exploration and Development, 2015, 42(4): 496-501.
[8] ZHANG Z, LIN Y, TANG Z, et al.Nanometer materials & nanotechnology and their application prospect[J]. Journal of Materials Engineering, 2000, 3: 42-48.
[9] 中国科学院纳米科技领域战略研究组. 中国至2050年纳米科技发展路线图[M]. 北京: 科学出版社, 2009.
The Strategic Research Group of Nanoscale Science and Technology of Chinese Academy of Science. The roadmap of nanotechnology development from now to 2050 in China[M]. Beijing: Science Press, 2009.
[10] LI G, ZHANG J, HOU Y.Nanotechnology to improve sealing ability of drilling fluids for shale with micro-cracks during drilling[R]. SPE 156997, 2012.
[11] FLETCHER A, DAVIS J.How EOR can be transformed by nanotechnology[R]. SPE 129531, 2010.
[12] FATHOLLAHI A, ROSTAMI B.Carbonated water injection: Effects of silica nanoparticles and operating pressure[J]. Canadian Journal of Chemical Engineering, 2015, 93(11): 1949-1956.
[13] HASANNEJADA R, POURAFSHARY P, VATANI A, 等. 二氧化硅纳米流体在储集层微粒运移控制中的应用[J]. 石油勘探与开发, 2017, 44(5): 802-810.
HASANNEJADA R, POURAFSHARY P, VATANI A, et al.Application of silica nanofluid to control initiation of fines migration[J]. Petroleum Exploration and Development, 2017, 44(5): 802-810.
[14] PENG B, TANG J, LUO J, et al.Applications of nanotechnology in oil and gas industry: Progress and perspective[J]. Canadian Journal of Chemical Engineering, 2018, 96(1): 91-100.
[15] 罗健辉, 雷群, 丁彬, 等. 智能纳米驱油剂应用展望[R]. 北京: 中国化学会学术年会, 2014.
LUO Jianhui, LEI Qun, DING Bin, et al.Application prospect of intelligentized nano oil displacement agent[R]. Beijing: Annual meeting of the Chinese Chemical Society, 2014.
[16] SALINAS B, XU Z, AGRAWAL G, et al.Controlled electrolytic metallics: An interventionless nanostructured platform[R]. SPE 153428, 2012.
[17] 罗健辉, 王平美, 彭宝亮, 等. 低渗透油田水驱扩大波及体积技术探讨[J]. 油田化学, 2017, 34(4): 756-760.
LUO Jianhui, WANG Pingmei, PENG Baoliang, et al.Discussion on expanding swept volume technique of water flooding in low permeability oilfield[J]. Oilfield Chemistry, 2017, 34(4): 756-760.
[18] MIRANDA C R, LARA L S, TONETTO B C.Stability and mobility of functionalized silica nanoparticles for enhanced oil recovery applications[R]. SPE 157033, 2012.
[19] AYATOLLAHI S, ZERAFAT M M.Nanotechnology-assisted EOR techniques: New solutions to old challenges[R]. SPE 157094, 2012.
[20] 杨正明, 姜汉桥, 周荣学, 等. 用核磁共振技术测量低渗含水气藏中的束缚水饱和度[J]. 石油钻采工艺, 2008, 30(3): 56-59.
YANG Zhengming, JIANG Hanqiao, ZHOU Rongxue, et al.Measurement research on irreducible water saturation in low- permeability water-cut gas reservoirs using NMR techniques[J]. Oil Drilling & Production Technology, 2008, 30(3): 56-59.
[21] 狄勤丰, 张景楠, 华帅, 等. 聚合物-弱凝胶调驱核磁共振可视化实验[J]. 石油勘探与开发, 2017, 44(2): 270-274.
DI Qinfeng, ZHANG Jingnan, HUA Shuai, et al.Visualization experiments on polymer-weak gel profile control and displacement by NMR technique[J]. Petroleum Exploration and Development, 2017, 44(2): 270-274.
[22] LUDWIG R.Water: From clusters to the bulk[J]. Cheminform, 2001, 40(10): 1808-1827.
[23] 李福志, 张晓健, 吕木坚. 用17O核磁共振研究液态水的团簇结构[J]. 环境科学学报, 2004, 24(1): 6-9.
LI Fuzhi, ZHANG Xiaojian, LYU Mujian.Study on liquid water cluster with 17O-NMR[J]. Acta Scientiae Circumstantiae, 2004, 24(1): 6-9.
[24] 耿向飞, 罗健辉, 丁彬, 等. 低渗透油藏毛细作用评价方法研究[J]. 油田化学, 2017, 34(4): 717-720.
GENG Xiangfei, LUO Jianhui, DING Bin, et al.Study on evaluation method of capillary action for low permeability reservoirs[J]. Oilfield Chemistry, 2017, 34(4): 717-720.
文章导航

/