[1] 袁自学,王靖云,李淑珣, 等. 特低渗透注水砂岩油藏采收率确定方法[J]. 石油勘探与开发, 2014, 41(3): 341-348.
YUAN Zixue, WANG Jingyun, LI Shuxun, et al.A new approach to estimating recovery factor for extra-low permeability water-flooding sandstone reservoir[J]. Petroleum Exploration and Development, 2014, 41(3): 341-348.
[2] 窦宏恩, 马世英, 邹存友, 等. 正确认识低和特低渗透油藏启动压力梯度[J]. 中国科学: 地球科学, 2014, 44(8): 1751-1760.
DOU Hong’en, MA Shiying, ZOU Cunyou, et al.Threshold pressure gradient of fluid flow through multi-porous media in low and extra-low permeability reservoir[J]. SCIENCE CHINA Earth Sciences, 2014, 44(8): 1751-1760.
[3] 胡钦红, 张宇翔, 孟祥豪, 等. 渤海湾盆地东营凹陷古近系沙河街组页岩油储集层微米—纳米级孔隙体系表征[J]. 石油勘探与开发, 2017, 44(5): 681-690.
HU Qinhong, ZHANG Yuxiang, MENG Xianghao, et al.Characterization of micro-nano pore networks in shale oil reservoirs of Paleogene Shahejie Formation in Dongying Sag of Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2017, 44(5): 681-690.
[4] 杨仁锋, 姜瑞忠, 刘世华, 等. 特低渗透油藏非线性渗流数值模拟[J]. 石油学报, 2011, 32(2): 299-306.
YANG Renfeng, JIANG Ruizhong, LIU Shihua, et al.Numerical simulation of nonlinear seepage in ultra-low permeability reservoirs[J]. Acta Petrolei Sinica, 2011, 32(2): 299-306.
[5] 胡文瑞, 魏漪, 鲍敬伟. 中国低渗透油气藏开发理论与技术进展[J]. 石油勘探与开发, 2018, 45(4): 646-656.
HU Wenrui, WEI Yi, BAO Jingwei.Development of the theory and technology for low permeability reservoirs in China[J]. Petroleum Exploration and Development, 2018, 45(4): 646-656.
[6] 张昌民, 穆龙新, 宋新民, 等. 油气田开发地质理论与实践[M]. 北京: 石油工业出版社, 2011.
ZHANG Changmin, MU Longxin, SONG Xinmin, et al.Theory and practice of development and geology of oil and gas field[M]. Beijing: Petroleum Industry Press, 2011.
[7] 范天一, 宋新民, 吴淑红, 等. 低渗透油藏水驱动态裂缝数学模型及数值模拟[J]. 石油勘探与开发, 2015, 42(4): 496-501.
FAN Tianyi, SONG Xinmin, WU Shuhong, et al.A mathematical model and numerical simulation of water flood induced dynamic fractures of low permeability reservoirs[J]. Petroleum Exploration and Development, 2015, 42(4): 496-501.
[8] ZHANG Z, LIN Y, TANG Z, et al.Nanometer materials & nanotechnology and their application prospect[J]. Journal of Materials Engineering, 2000, 3: 42-48.
[9] 中国科学院纳米科技领域战略研究组. 中国至2050年纳米科技发展路线图[M]. 北京: 科学出版社, 2009.
The Strategic Research Group of Nanoscale Science and Technology of Chinese Academy of Science. The roadmap of nanotechnology development from now to 2050 in China[M]. Beijing: Science Press, 2009.
[10] LI G, ZHANG J, HOU Y.Nanotechnology to improve sealing ability of drilling fluids for shale with micro-cracks during drilling[R]. SPE 156997, 2012.
[11] FLETCHER A, DAVIS J.How EOR can be transformed by nanotechnology[R]. SPE 129531, 2010.
[12] FATHOLLAHI A, ROSTAMI B.Carbonated water injection: Effects of silica nanoparticles and operating pressure[J]. Canadian Journal of Chemical Engineering, 2015, 93(11): 1949-1956.
[13] HASANNEJADA R, POURAFSHARY P, VATANI A, 等. 二氧化硅纳米流体在储集层微粒运移控制中的应用[J]. 石油勘探与开发, 2017, 44(5): 802-810.
HASANNEJADA R, POURAFSHARY P, VATANI A, et al.Application of silica nanofluid to control initiation of fines migration[J]. Petroleum Exploration and Development, 2017, 44(5): 802-810.
[14] PENG B, TANG J, LUO J, et al.Applications of nanotechnology in oil and gas industry: Progress and perspective[J]. Canadian Journal of Chemical Engineering, 2018, 96(1): 91-100.
[15] 罗健辉, 雷群, 丁彬, 等. 智能纳米驱油剂应用展望[R]. 北京: 中国化学会学术年会, 2014.
LUO Jianhui, LEI Qun, DING Bin, et al.Application prospect of intelligentized nano oil displacement agent[R]. Beijing: Annual meeting of the Chinese Chemical Society, 2014.
[16] SALINAS B, XU Z, AGRAWAL G, et al.Controlled electrolytic metallics: An interventionless nanostructured platform[R]. SPE 153428, 2012.
[17] 罗健辉, 王平美, 彭宝亮, 等. 低渗透油田水驱扩大波及体积技术探讨[J]. 油田化学, 2017, 34(4): 756-760.
LUO Jianhui, WANG Pingmei, PENG Baoliang, et al.Discussion on expanding swept volume technique of water flooding in low permeability oilfield[J]. Oilfield Chemistry, 2017, 34(4): 756-760.
[18] MIRANDA C R, LARA L S, TONETTO B C.Stability and mobility of functionalized silica nanoparticles for enhanced oil recovery applications[R]. SPE 157033, 2012.
[19] AYATOLLAHI S, ZERAFAT M M.Nanotechnology-assisted EOR techniques: New solutions to old challenges[R]. SPE 157094, 2012.
[20] 杨正明, 姜汉桥, 周荣学, 等. 用核磁共振技术测量低渗含水气藏中的束缚水饱和度[J]. 石油钻采工艺, 2008, 30(3): 56-59.
YANG Zhengming, JIANG Hanqiao, ZHOU Rongxue, et al.Measurement research on irreducible water saturation in low- permeability water-cut gas reservoirs using NMR techniques[J]. Oil Drilling & Production Technology, 2008, 30(3): 56-59.
[21] 狄勤丰, 张景楠, 华帅, 等. 聚合物-弱凝胶调驱核磁共振可视化实验[J]. 石油勘探与开发, 2017, 44(2): 270-274.
DI Qinfeng, ZHANG Jingnan, HUA Shuai, et al.Visualization experiments on polymer-weak gel profile control and displacement by NMR technique[J]. Petroleum Exploration and Development, 2017, 44(2): 270-274.
[22] LUDWIG R.Water: From clusters to the bulk[J]. Cheminform, 2001, 40(10): 1808-1827.
[23] 李福志, 张晓健, 吕木坚. 用17O核磁共振研究液态水的团簇结构[J]. 环境科学学报, 2004, 24(1): 6-9.
LI Fuzhi, ZHANG Xiaojian, LYU Mujian.Study on liquid water cluster with 17O-NMR[J]. Acta Scientiae Circumstantiae, 2004, 24(1): 6-9.
[24] 耿向飞, 罗健辉, 丁彬, 等. 低渗透油藏毛细作用评价方法研究[J]. 油田化学, 2017, 34(4): 717-720.
GENG Xiangfei, LUO Jianhui, DING Bin, et al.Study on evaluation method of capillary action for low permeability reservoirs[J]. Oilfield Chemistry, 2017, 34(4): 717-720.