油气勘探

碳酸盐岩-膏盐岩共生体系白云岩成因及储盖组合

  • 胡安平 ,
  • 沈安江 ,
  • 杨翰轩 ,
  • 张杰 ,
  • 王鑫 ,
  • 杨柳 ,
  • 蒙绍兴
展开
  • 1. 中国石油杭州地质研究院,杭州 310023;
    2. 中国石油天然气集团有限公司碳酸盐岩储集层重点实验室,杭州 310023
胡安平(1982-),女,浙江天台人,博士,中国石油杭州地质研究院高级工程师,主要从事碳酸盐岩储集层研究与地球化学实验技术研发工作。地址:浙江省杭州市西湖区西溪路920号,中国石油杭州地质研究院,邮政编码:310023。E-mail:huap_hz@petrochina.com.cn

收稿日期: 2019-03-03

  修回日期: 2019-07-16

  网络出版日期: 2019-09-17

Dolomite genesis and reservoir-cap rock assemblage in carbonate-evaporite paragenesis system

  • HU Anping ,
  • SHEN Anjiang ,
  • YANG Hanxuan ,
  • ZHANG Jie ,
  • WANG Xin ,
  • YANG Liu ,
  • MENG Shaoxing
Expand
  • 1. PetroChina Hangzhou Research Institute of Geology (HIPG), Hangzhou 310023, China;
    2. Key Laboratory of Carbonate Reservoirs, CNPC, Hangzhou 310023, China

Received date: 2019-03-03

  Revised date: 2019-07-16

  Online published: 2019-09-17

Supported by

国家科技重大专项“大型油气田及煤层气开发”(2016ZX05004-002); 中国石油天然气股份有限公司直属院所基础研究和战略储备技术研究基金(2018D-5008-03); 中国石油天然气股份有限公司重大科技项目“深层油气储集层形成机理与分布规律”(2018A-0103)

摘要

针对碳酸盐岩-膏盐岩共生体系中储集层发育规律和储盖组合类型不清的问题,开展该体系岩性组合特征、白云岩与储集层成因和储盖组合类型研究。在全球碳酸盐岩油气藏调研的基础上,解剖分析国内外4个碳酸盐岩-膏盐岩组合剖面,综合应用地质和实验分析工作,取得以下3个方面的地质认识:①潮湿气候到干旱气候的变迁决定了碳酸盐岩-膏盐岩共生体系岩性组合序列,正常情况下形成微生物灰岩/生屑灰岩→微生物白云岩→膏云岩→膏盐岩系列,反之亦然,气候的突变会导致某种岩性的缺失。②碳酸盐岩-膏盐岩共生体系中主要发育3类储集层,包括微生物灰岩/生屑灰岩、微生物白云岩和膏云岩储集层,存在沉淀和交代2种成因的白云岩。微生物早期降解和微生物岩晚期热解释放的CO2气体和有机酸,以及早期白云石化作用是微生物白云岩能够成为优质储集层的主控因素。③碳酸盐岩-膏盐岩共生体系理论上存在6类14种储盖组合类型,目前的油气发现主要集中在4种组合中,包括微生物灰岩/生屑灰岩→微生物白云岩→膏云岩→膏盐岩组合、微生物灰岩/生屑灰岩→膏盐岩组合、微生物白云岩→膏云岩→膏盐岩组合和膏云岩→微生物白云岩→致密碳酸盐岩或碎屑岩组合,这显然与地质历史时期古气候变迁的内在规律有关。通过解剖已发现的油气藏,揭示在碳酸盐岩-膏盐岩体系中以上4种储盖组合最为现实,勘探前景较好。图12表1参41

本文引用格式

胡安平 , 沈安江 , 杨翰轩 , 张杰 , 王鑫 , 杨柳 , 蒙绍兴 . 碳酸盐岩-膏盐岩共生体系白云岩成因及储盖组合[J]. 石油勘探与开发, 2019 , 46(5) : 916 -928 . DOI: 10.11698/PED.2019.05.10

Abstract

Regarding to the problem on the reservoir-cap rock assemblage evaluation in the carbonate-evaporite paragenesis system, this study examined the dolomite and reservoirs genesis and the characteristics of reservoir-cap rock assemblage. Based on the literature research of the global carbonate reservoirs and the case study on four profiles of carbonate-evaporite succession, together with geological and experimental work, three aspects of understandings are achieved. (1) Lithology of carbonate-evaporite paragenesis system is mainly composed of microbial limestone/bioclastic limestone, microbial dolomite, gypsum dolomite and gypsum salt rock deposited sequentially under the climatic conditions from humid climate to arid climate, and vice versa, and an abrupt climate change event would lead to the lack of one or more rock types. (2) There developed two kinds of dolomite (precipitation and metasomatism) and three kinds of reservoirs in the carbonate-evaporite system; and the carbon dioxide and organic acid generated during early microorganism degradation and late microbial dolomite pyrolysis process, and early dolomitization are the main factors affecting the development of microbial dolomite reservoirs with good quality. (3) In theory, there are 14 types of reservoir-cap rock assemblages of six categories in the carbonate-evaporite system, but oil and gas discoveries are mainly in four types of reservoir-cap rock assemblages, namely “microbial limestone/bioclastic limestone - microbial dolomite - gypsum dolomite - gypsum salt rock”, “microbial limestone/bioclastic limestone - gypsum salt rock”, “microbial dolomite - gypsum dolomite - gypsum salt rock” and “gypsum dolomite - microbial dolomite - tight carbonate or clastic rock”. These four kinds of reservoir-cap rock assemblages should be related with the climate change rules in the geologic history, and have good exploration prospects.

参考文献

[1] LIU H, TAN X, LI Y, et al.Occurrence and conceptual sedimentary model of Cambrian gypsum-bearing evaporites in the Sichuan Basin, SW China[J]. Geoscience Frontiers, 2018, 9(4): 1179-1191.
[2] ANDREEVA V P. Middle Devonian (Givetian) supratidal sabkha anhydrites from the Moesian Platform (Northeastern Bulgaria)[J]. Carbonates and Evaporites, 2015, 30(4): 439-449.
[3] ABRANTES F R, NOGUEIRA A C R, SOARES J L. Permian paleogeography of west-central Pangea: Reconstruction using sabkha-type gypsum-bearing deposits of Parnaíba Basin, Northern Brazil[J]. Sedimentary Geology, 2016, 341(15): 175-188.
[4] KASPRZYK A.Sedimentological and diagenetic patterns of anhydrite deposits in the Badenian evaporite basin of the Carpathian foredeep, southern Poland[J]. Sedimentary Geology, 2003, 158(3): 167-194.
[5] 王淑丽, 郑绵平. 我国寒武系膏盐岩分布特征及其对找钾指示[J]. 矿床地质, 2012, 31(S1): 487-488.
WANG Shuli, ZHENG Mianping.The distribution characteristics of the gypsum-salt rocks in Cambrian in China and its significance on potash deposit exploration[J]. Mineral Deposits, 2012, 31(S1): 487-488.
[6] 孙玉景, 周立发. 鄂尔多斯盆地马五段膏盐岩沉积对天然气成藏的影响[J]. 岩性油气藏, 2018, 30(6): 67-75.
SUN Yujing, ZHOU Lifa.Influences of gypsum-salt deposition on gas accumulation of the fifth member of Majiagou Formation in Ordos Basin[J]. Lithologic Reservoirs, 2018, 30(6): 67-75.
[7] 魏水建, 冯琼, 冯寅, 等. 川东北通南巴地区三叠系膏盐岩盖层预测[J]. 石油实验地质, 2011, 33(1): 81-86.
WEI Shuijian, FENG Qiong, FENG Yin, et al.Prediction of Triassic gypsum cap rocks in Tongnanba region of Northeast Sichuan Basin[J]. Petroleum Geology & Experiment, 2011, 33(1): 81-86.
[8] 许丽, 李江海, 王洪浩, 等. 库车坳陷大北地区古近纪沉积特征及盐湖演化[J]. 特种油气藏, 2016, 23(5): 56-61.
XU Li, LI Jianghai, WANG Honghao, et al.Paleogene sedimentary properties and salt lake evolution in Dabei of Kuqa Depression[J]. Special Oil and Gas Reservoirs, 2016, 23(5): 56-61.
[9] 刘朝全, 姜学峰. 2016年国内外油气行业发展报告[R]. 北京: 石油工业出版社, 2016.
LIU Chaoquan, JIANG Xuefeng.The development report on oil and gas industry in domestic and overseas in 2016[R]. Beiing: Petroleum Industry Press, 2016.
[10] 穆龙新. 全球油气勘探开发形势及油公司动态(2017)[M]. 北京: 石油工业出版社, 2017.
MU Longxin.Global petroleum exploration and development situation and oil company dynamics(2017)[M]. Beiing: Petroleum Industry Press, 2017.
[11] 卫平生, 蔡忠贤, 潘建国, 等. 世界典型碳酸盐岩油气田储层[M]. 北京: 石油工业出版社, 2018.
WEI Pingsheng, CAI Zhongxian, PAN Jianguo, et al.Typical oil & gas reservoirs of carbonate rocks in the world[M]. Beijing: Petroleum Industy Press, 2018.
[12] 蔡习尧, 李越, 钱一雄, 等. 塔里木板块巴楚隆起区寒武系盐下勘探潜力分析[J]. 地层学杂志, 2010, 34(3): 283-288.
CAI Xiyao, LI Yue, QIAN Yixiong, et al.Exploration potential of the salt-capped Cambrian strata in the Bachu high, Tarim block, NW China[J]. Journal of Stratigraphy, 2010, 34(3): 283-288.
[13] 胡素云, 石书缘, 王铜山, 等. 膏盐环境对碳酸盐岩层系成烃、成储和成藏的影响[J]. 中国石油勘探, 2016, 21(2): 20-27.
HU Suyun, SHI Shuyuan, WANG Tongshan, et al.Effect of gypsum-salt environment on hydrocarbon generation, reservoir-forming and hydrocarbon accumulation in carbonate strata[J]. China Petroleum Exploration, 2016, 21(2): 20-27.
[14] LIU Wenhui, ZHAO Heng, LIU Quanyou, et al.Significance of gypsum-salt rock series for marine hydrocarbon accumulation[J]. Petroleum Research, 2017, 2(3): 222-232.
[15] 陈娅娜, 沈安江, 潘立银, 等. 微生物白云岩储集层特征、成因和分布: 以四川盆地震旦系灯影组四段为例[J]. 石油勘探与开发, 2017, 44(5): 704-715.
CHEN Yana, SHEN Anjiang, PAN Liyin, et al.Features, origin and distribution of microbial dolomite reservoirs: A case study of 4th Member of Sinian Dengying Formation in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(5): 704-715.
[16] 吴世祥, 李宏涛, 龙胜祥, 等. 川西雷口坡组碳酸盐岩储层特征及成岩作用[J]. 石油与天然气地质, 2011, 32(4): 542-550.
WU Shixiang, LI Hongtao, LONG Shengxiang, et al.A study on characteristics and diagenesis of carbonate reservoirs in the Middle Triassic Leikoupo Formation in western Sichuan Depression[J]. Oil & Gas Geology, 2011, 32(4): 542-550.
[17] 卓勤功, 赵孟军, 李勇, 等. 膏盐岩盖层封闭性动态演化特征与油气成藏: 以库车前陆盆地冲断带为例[J]. 石油学报, 2014, 35(5): 847-856.
ZHUO Qingong, ZHAO Mengjun, LI Yong, et al.Dynamic sealing evolution and hydrocarbon accumulation of evaporite cap rocks: An example from Kuqa foreland basin thrust belt[J]. Acta Petrolei Sinica, 2014, 35(5): 847-856.
[18] 王海云, 金鑫, 陈小青. 蒸发岩地层成因及与油气藏的关系浅析[J]. 国外测井技术, 2013, 34(2): 53-56.
WANG Haiyun, JIN Xin, CHEN Xiaoqing.The evaporite formation cause and the relationship between oil and gas reservoirs[J]. World Well Logging Technology, 2013, 34(2): 53-56.
[19] 林良彪, 郝强, 余瑜, 等. 四川盆地下寒武统膏盐岩发育特征与封盖有效性分析[J]. 岩石学报, 2014, 30(3): 718-726.
LIN Liangbiao, HAO Qiang, YU Yu, et al.Development characteristics and sealing effectiveness of Lower Cambrian gypsum rock in Sichuan Basin[J]. Acta Petrologica Sinica, 2014, 30(3): 718-726.
[20] 李永豪, 曹剑, 胡文瑄, 等. 膏盐岩油气封盖性研究进展[J]. 石油与天然气地质, 2016, 37(5): 634-643.
LI Yonghao, CAO Jian, HU Wenxuan, et al.Research advances on hydrocarbon sealing properties of gypsolyte/saline rocks[J]. Oil & Gas Geology, 2016, 37(5): 634-643.
[21] TAZI L, BREAKWELL D P, HARKER A R, et al.Life in extreme environments: Microbial diversity in Great Salt Lake, Utah[J]. Extremophiles, 2014, 18(3): 525-535.
[22] FOLK R L, LAND L S.Mg/Ca ratio and salinity: Two controls over crystallization of dolomite[J]. AAPG Bullutin, 1975, 59: 60-68.
[23] 赵文智, 沈安江, 乔占峰, 等. 白云岩成因类型、识别特征及储集空间成因[J]. 石油勘探与开发, 2018, 45(6): 923-935.
ZHAO Wenzhi, SHEN Anjiang, QIAO Zhanfeng, et al.Genetic types and distinguished characteristics of dolomite and the origin of dolomite reservoirs[J]. Petroleum Exploration and Development, 2018, 45(6): 923-935.
[24] LAND L S.Failure to precipitate dolomite at 25 ℃ from dilute solution despite 1000-fold oversaturation after 32 years[J]. Aquatic Geochemistry, 1998, 4(3): 361-368.
[25] VASCONCELOS C, MCKENZIE J A, BERNASCONI S, et al.Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J]. Nature, 1995, 377(6546): 220-222.
[26] WARTHMANN R, VASCONCELOS C, SASS H, et al.Desulfovibrio brasiliensis sp. nov., a moderate halophilic sulfate-reducing bacterium from Lagoa Vermelha (Brazil) mediating dolomite formation[J]. Extremophiles, 2005, 9(3): 255-261.
[27] KENWARD P A, UESHIMA M U, FOWLE D A.Ordered low-temperature dolomite mediated by carboxyl-group density of microbial cell walls[J]. AAPG Bulletin, 2013, 97(11): 2113-2125.
[28] 苏中堂, 陈洪德, 徐粉燕, 等. 鄂尔多斯盆地马家沟组白云岩成因及其储集性能[J]. 海相油气地质, 2013, 18(2): 15-22.
SU Zhongtang, CHEN Hongde, XU Fenyan, et al.Genesis and reservoir property of lower Ordovician Majiagou Dolostones in Ordos Basin[J]. Marine Origin Petroleum Geology, 2013, 18(2): 15-22.
[29] 陈莉琼, 沈昭国, 侯方浩, 等. 四川盆地三叠纪蒸发岩盆地形成环境及白云岩储层[J]. 石油实验地质, 2010, 32(4): 334-340.
CHEN Liqiong, SHEN Zhaoguo, HOU Fanghao, et al.Formation environment of Triassic evaporate rock basin and dolostone reserovirs in the Sichuan Basin[J]. Petroleum Geology & Experiment, 2010, 32(4): 334-340.
[30] 沈安江, 郑剑锋, 陈永权, 等. 塔里木盆地中下寒武统白云岩储集层特征、成因及分布[J]. 石油勘探与开发, 2016, 43(3): 340-349.
SHEN Anjiang, ZHENG Jianfeng, CHEN Yongquan, et al.Characteristics, origin and distribution of dolomite reservoirs in Lower-Middle Cambrian, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(3): 340-349.
[31] 沈安江, 赵文智, 胡安平, 等. 海相碳酸盐岩储集层发育主控因素[J]. 石油勘探与开发, 2015, 42(5): 545-554.
SHEN Anjiang, ZHAO Wenzhi, HU Anping, et al.Major factors controlling the development of marine carbonate reservoirs[J]. Petroleum Exploration and Development, 2015, 42(5): 545-554.
[32] 赵文智, 沈安江, 郑剑锋, 等. 塔里木、四川及鄂尔多斯盆地白云岩储层孔隙成因探讨及对储层预测的指导意义[J]. 中国科学: 地球科学, 2014, 44(9): 1925-1939.
ZHAO Wenzhi, SHEN Anjiang, ZHENG Jianfeng, et al.The porosity origin of dolostone reservoirs in the Tarim, Sichuan and Ordos basins and its implication to reservoir prediction[J]. SCIENCE CHINA Earth Sciences, 2014, 57(10): 2498-2511.
[33] 赵文智, 沈安江, 胡素云, 等. 中国碳酸盐集层岩储大型化发育的地质条件与分布特征[J]. 石油勘探与开发, 2012, 39(1): 1-12.
ZHAO Wenzhi, SHEN Anjiang, HU Suyun, et al.Geological conditions and distributional features of large-scale carbonate reservoirs onshore China[J]. Petroleum Exploration and Development, 2012, 39(1): 1-12.
[34] IHS ENERGY.Global Upstream Performance Review[DB/CD]. Houston: IHS Inc, 2016.
[35] 童晓光, 张光亚, 王兆明, 等. 全球油气资源潜力与分布[J]. 石油勘探与开发, 2018, 45(4): 727-736.
TONG Xiaoguang, ZHANG Guangya, WANG Zhaoming, et al.Distribution and potential of global oil and gas resources[J]. Petroleum Exploration and Development, 2018, 45(4): 727-736.
[36] 刘文汇, 腾格尔, 王晓锋, 等. 中国海相碳酸盐岩层系有机质生烃理论新解[J]. 石油勘探与开发, 2017, 44(1): 155-164.
LIU Wenhui, BORJIGIN Tenger, WANG Xiaofeng, et al.New knowledge of hydrocarbon generating theory of organic matter in Chinese marine carbonates[J]. Petroleum Exploration and Development, 2017, 44(1): 155-164.
[37] 佘敏, 胡安平, 王鑫, 等. 湖相叠层石生排烃模拟及微生物碳酸盐岩生烃潜力[J]. 中国石油大学学报(自然科学版), 2019, 43(1): 12-22.
SHE Min, HU Anping, WANG Xin, et al.Thermocompression simulation of hydrocarbon generation and expulsion for lacustrine stromatolite and hydrocarbon generation potential of microbial carbonates[J]. Journal of China University of Petroleum (Science & Technology Edition), 2019, 43(1): 12-22.
[38] ALEKLETT K.The global oil and gas factory[M]. New York: Springer, 2012.
[39] 甘克文. 概论全球油气分布[J]. 石油科技论坛, 2007, 26(3): 27-32.
GAN Kewen.An overview of global oil and gas distribution[J]. Oil Forum, 2007, 26(3): 27-32.
[40] 蒲莉萍, 张哨楠, 王泽发, 等. 四川中坝气田雷口坡组成藏条件及油气主控因素[J]. 四川地质学报, 2014, 34(1): 53-57.
PU Liping, ZHANG Shaonan, WANG Zefa, et al.Main control factors of hydrocarbon accumulation of gas trap of the Leikoupo Formation in the Zhongba Gas Field, Sichuan[J]. Acta Geologica Sichuan, 2014, 34(1): 53-57.
[41] 李伟, 涂建琪, 张静, 等. 鄂尔多斯盆地奥陶系马家沟组自源型天然气聚集与潜力分析[J]. 石油勘探与开发, 2017, 44(4): 521-530.
LI Wei, TU Jianqi, ZHANG Jing, et al.Accumulation and potential analysis of self-sourced natural gas in the Ordovician Majiagou Formation of Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(4): 521-530.
文章导航

/