石油工程

基于井下分离的深水双梯度钻井参数优化

  • 王江帅 ,
  • 李军 ,
  • 柳贡慧 ,
  • 黄涛 ,
  • 杨宏伟
展开
  • 1. 中国石油大学(北京)石油工程学院,北京102249;
    2. 北京工业大学,北京100192;
    3. 中海油田服务股份有限公司,天津 300459
王江帅(1993-),男,陕西兴平人,中国石油大学(北京)在读博士研究生,主要从事深水控压钻井与井控方面研究工作。地址:北京市昌平区府学路18号中国石油大学(北京)石油工程学院,邮政编码:102249。 E-mail:wjs125126@163.com

收稿日期: 2018-12-14

  修回日期: 2019-04-04

  网络出版日期: 2019-07-17

基金资助

国家自然科学基金重点项目“深水油气钻采井筒压力控制基础研究”(51734010)

Parameters optimization in deepwater dual-gradient drilling based on downhole separation

  • WANG Jiangshuai ,
  • LI Jun ,
  • LIU Gonghui ,
  • HUANG Tao ,
  • YANG Hongwei
Expand
  • 1. College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China;
    2. Beijing University of Technology, Beijing 100192, China;
    3. China Oilfield Services Limited, Tianjin 300459, China

Received date: 2018-12-14

  Revised date: 2019-04-04

  Online published: 2019-07-17

摘要

为解决深水窄压力窗口安全钻井问题,设计了一种基于井下分离的新型深水双梯度钻井方式,通过室内实验验证了井下分离的有效性和实现井筒双梯度的可行性,对钻进过程中的动态井筒压力进行计算,并针对该钻井方式建立了钻井参数(包括分离器位置、分离效率、注入体积分数、钻井液密度、井口回压、排量)优化模型。通过实例分析了不同控制参数条件下及不同窄安全压力窗口下的钻井参数优化问题,结果表明井筒压力剖面得到优化,可适应深水窄压力窗口,实现更大钻进深度;利用最优化模型,可以获得更小的钻井井底压差,从而提高钻速,同时保护储集层;优化过程中始终保证动态变化的井筒压力在安全压力窗口内,可有效避免因压力不平衡导致的井下复杂情况。图8表4参18

本文引用格式

王江帅 , 李军 , 柳贡慧 , 黄涛 , 杨宏伟 . 基于井下分离的深水双梯度钻井参数优化[J]. 石油勘探与开发, 2019 , 46(4) : 776 -781 . DOI: 10.11698/PED.2019.04.17

Abstract

To ensure safe drilling with narrow pressure margins in deepwater, a new deepwater dual-gradient drilling method based on downhole separation was designed. A laboratory experiment was conducted to verify the effectiveness of downhole separation and the feasibility of realizing dual-gradient in wellbore. The calculation of dynamic wellbore pressure during drilling was conducted. Then, an optimization model for drilling parameters was established for this drilling method, including separator position, separation efficiency, injection volume fraction, density of drilling fluid, wellhead back pressure and displacement. The optimization of drilling parameters under different control parameters and different narrow safe pressure margins is analyzed by case study. The optimization results indicate that the wellbore pressure profile can be optimized to adapt to the narrow pressure margins and achieve greater drilling depth. By using the optimization model, a smaller bottom-hole pressure difference can be obtained, which can increase the rate of penetration (ROP) and protect reservoirs. The dynamic wellbore pressure has been kept within safe pressure margins during optimization process, effectively avoiding the complicated underground situations caused by improper wellbore pressure.

参考文献

[1] BRYN P, BERG K, FORSBERG C F, et al.Explaining the storegga slide[J]. Marine and Petroleum Geology, 2005, 22(1/2): 11-19.
[2] CHARLEZ P A, SIMONDIN A A.Collection of innovative answers to solve the main problematics encountered when drilling deep water prospects[R]. OTC 15234, 2003.
[3] SHANMUGAM G.密度羽流构型特征、控制因素及其对深水沉积的启示:对河口和其他环境中密度羽流进行的全球卫星调查[J]. 石油勘探与开发, 2018, 45(4): 608-625.
SHANMUGAM G.A global satellite survey of density plumes at river mouths and at other environments: Plume configurations, external controls, and implications for deep-water sedimentation[J]. Petroleum Exploration and Development, 2018, 45(4): 608-625.
[4] 高永海, 刘凯, 赵欣欣, 等. 深水油井测试工况下井筒结蜡区域预测方法[J]. 石油勘探与开发, 2018, 45(2): 333-338.
GAO Yonghai, LIU Kai, ZHAO Xinxin, et al.Prediction of wax precipitation region in wellbore during deep water oil well testing[J]. Petroleum Exploration and Development, 2018, 45(2): 333-338.
[5] 杨进, 曹式敬. 深水石油钻井技术现状及发展趋势[J]. 石油钻采工艺, 2008, 30(2): 10-13.
YANG Jin, CAO Shijing.Current situation and developing trend of petroleum drilling technologies in deep water[J]. Oil Drilling and Production Technology, 2008, 30(2): 10-13.
[6] LOPES C.Feasibility study on the reduction of hydrostatic pressure in a deep water riser using a gas lift method[D]. Baton Rouge: Louisiana State University, 1997.
[7] MAURER W C, MEDLEY G H, MCDONALD W J. Multi-gradient drilling method and system: 006530437[P].2003-03-11.
[8] SMITH K L, GAULT A D, WITT D E, et al.Subsea mud-lift drilling joint industry project: Delivering dual gradient drilling technology to industry[R]. SPE 71357, 2001.
[9] FOSSLI B, SANGESLAND S.Controlled mud-cap drilling for subsea applications: Well-control challenges in deep waters[R]. SPE 91633, 2006.
[10] LI J, LIU G, LI J.Mathematical modeling of unsteady flow in controlled mud-cap drilling[J]. Chemistry & Technology of Fuels & Oils, 2016, 52(1): 111-118.
[11] LI J, LIU G, LI J, et al.Modeling and analysis of unsteady flow behavior in deepwater controlled mud-cap drilling[J]. Brazilian Journal of Chemical Engineering, 2016, 33(1): 91-104.
[12] YANG H, LI J, LIU G, et al.Development of transient heat transfer model for controlled gradient drilling[J]. Applied Thermal Engineering, 2019, 148(3): 331-339.
[13] LI J, HE M, ZHANG H, et al.Numerical model for evaluating well kick and lost circulation during managed pressure drilling[J]. Chemistry & Technology of Fuels & Oils, 2017, 53(4): 557-568.
[14] REED T D, PILEHVARI A A.A new model for laminar, transitional, and turbulent flow of drilling muds[R]. SPE 25456, 1993.
[15] NGUYEN D, RAHMAN S S.A three layer hydraulic program for effective cuttings transport and hole cleaning in highly deviated and horizontal wells[R]. SPE 36383, 1998.
[16] COLEBROOK C F, WHITE C M.Experiments with fluid friction in roughened pipes[J]. Proceedings of the Royal Society A-Mathematical and Physical Sciences, 1937, 161(906): 367-381.
[17] 张刚, 祝明波, 陈瑜, 等. 基于SQP算法的SAR成像导引头三维弹道优化[J]. 计算机工程与科学, 2012, 34(4): 145-150.
ZHANG Gang, ZHU Mingbo, CHEN Yu, et al.3D trajectory optimization of the SAR imaging seeker based on SQP[J]. Computer Engineering & Science, 2012, 34(4): 145-150.
[18] 王世怀, 徐亦方, 沈复. 综合简约Hessian SQP算法及在多元精馏优化中的应用[J]. 石油学报(石油加工), 1999, 15(3): 23-28.
WANG Shihuai, XU Yifang, SHEN Fu.Integrated reduced Hessian SQP algorithm for distillantion column optimization[J]. Acta Petrolei Sinica (Petroleum Processing Section), 1999, 15(3): 23-28.
文章导航

/