油气勘探

准噶尔盆地玛湖凹陷二叠系风城组碱湖沉积特征环境演化

  • 张志杰 ,
  • 袁选俊 ,
  • 汪梦诗 ,
  • 周川闽 ,
  • 唐勇 ,
  • 陈星渝 ,
  • 林敏捷 ,
  • 成大伟
展开
  • 1. 中国石油勘探开发研究院,北京 100083;
    2. 中国石油新疆油田公司,新疆克拉玛依 834000;
    3. 北京大学地球与空间科学学院,北京 100871
张志杰(1977-),女,河北保定人,博士,中国石油勘探开发研究院高级工程师,主要从事石油地质学和沉积学研究。地址:北京市海淀区学院路20号,中国石油勘探开发研究院石油地质实验研究中心,邮政编码:100083。E-mail: zhzhijie@petrochina.com.cn

收稿日期: 2018-04-26

  修回日期: 2018-10-15

  网络出版日期: 2018-10-30

基金资助

国家油气重大专项“岩性地层油气藏成藏规律、关键技术及目标评价”(2017ZX05001); 中国石油天然气股份有限公司科技项目“多类型湖盆沉积体系分布与岩相古地理分析”(2016B-0302)

Alkaline-lacustrine deposition and Paleoenvironmental evolution in Permian Fengcheng Formation at the Mahu Sag, Junggar Basin, NW China

  • ZHANG Zhijie ,
  • YUAN Xuanjun ,
  • WANG Mengshi ,
  • ZHOU Chuanmin ,
  • TANG Yong ,
  • CHEN Xingyu ,
  • LIN Minjie ,
  • CHENG Dawei
Expand
  • 1. Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China;
    2. Petrochina Xinjiang Oilfield Company, Karamay 834000, China;
    3. School of Earth and Space Sciences, Peking University, Beijing 100871, China

Received date: 2018-04-26

  Revised date: 2018-10-15

  Online published: 2018-10-30

摘要

基于岩心及薄片观察、地球化学及元素分析、测井电性响应特征、岩相类型及展布等研究,揭示准噶尔盆地玛湖凹陷下二叠统风城组的碱湖沉积特征及其演化模式。结果表明,风城组主要发育6种岩相类型,其中含碱性矿物岩相主要发育在风二段,富有机质泥岩岩相广泛分布于风一段上部和风三段下部,常与白云岩及云质岩类岩相呈互层产出。风城组古环境演化主要受火山活动和古气候控制,可以划分为5个阶段。第1阶段(风城组一段沉积前期)火山活动强烈,气候较干旱,火山碎屑岩-沉火山碎屑岩发育;第2阶段(风城组一段沉积后期)火山活动减弱,气候较湿润,富有机质泥岩发育,形成风城组主要烃源岩;第3阶段(风城组二段沉积早期)气候转向干热、湖盆开始萎缩,盐度逐渐升高,白云岩及云质岩类发育;第4阶段(风城组二段沉积后期)气候持续干热、湖平面低、盐度高,天然碱等特殊碱性矿物析出,标志着碱湖的最终形成;第5阶段(风城组三段沉积期)气候再次转为湿润,湖平面升高,湖盆开始淡化,以陆源碎屑岩、云质岩类沉积为主。图10表1参36

本文引用格式

张志杰 , 袁选俊 , 汪梦诗 , 周川闽 , 唐勇 , 陈星渝 , 林敏捷 , 成大伟 . 准噶尔盆地玛湖凹陷二叠系风城组碱湖沉积特征环境演化[J]. 石油勘探与开发, 2018 , 45(6) : 972 -984 . DOI: 10.11698/PED.2018.06.05

Abstract

Alkaline-lacustrine deposition and its evolution model in Permian Fengcheng Formation at the Mahu Sag, Junggar Basin were investigated through core and thin-section observation, geochemical and elemental analysis, logging response and lithofacies identification. Six lithofacies are developed in the Fengcheng Formation. The Feng 2 Member (P1f2) is dominated by lithofacies with alkaline minerals, while the upper part of the Feng 1 Member (P1f1) and the lower part of the Feng 3 Member (P1f3) are primarily organic-rich mudstones that are interbedded with dolomite and dolomitic rock. Paleoenvironment evolution of Fengcheng Formation can be divided into 5 stages, which was controlled by volcanic activity and paleoclimate. The first stage (the early phase of P1f1) was characterized by intensive volcanic activity and arid climate, developing pyroclastics and sedimentary volcaniclastic rocks. The secondary stage (the later phase of P1f1) had weak volcanic activity and humid climate that contributed to the development of organic-rich mudstone, forming primary source rock in the Fengcheng Formation. The increasing arid climate at the third stage (the early phase of P1f2) resulted in shrinking of lake basin and increasing of salinity, giving rise to dolomite and dolomitic rocks. The continuous aird climate, low lake level and high salinity at the fourth stage (the later phase of P1f2) generated special alkaline minerals, e.g., trona, indicating the formation of alkaline-lacustrine. The humid climate made lake level rise and desalted lake water, therefore, the fifth stage (P1f3) dominated by the deposition of terrigenous clastic rocks and dolomitic rocks.

参考文献

[1] DEOCAMPO D M, JONES B F.Geochemistry of saline lakes[J]. Treatise on Geochemistry, 2014, 7(2): 437-469.
[2] DEOCAMPO D M, RENAUT R W.Geochemistry of African soda lakes[M]. Switzerland: Springer International Publishing, 2016: 77-95.
[3] MELACK J M, PETER K.Photosynthetic rates of phytoplankton in East African alkaline, saline lakes[J]. Limnology and Oceanography, 1974, 19(5): 743-755.
[4] DOMAGALSKI J L, EUGSTER H P, JONES B F.Trace metal geochemistry of Walker, Mono, and Great Salt Lakes[J]. The Geochemical Society, 1990(2): 315-353.
[5] 孙大鹏. 内蒙高原的天然碱湖[J]. 海洋与湖沼, 1990, 21(1): 44-54.
SUN Dapeng.The soda lakes on inner Monggolia plateau, China[J]. Oceanologia et Limonologia Sinica, 1990, 21(1): 44-54.
[6] ROEHLER H W.Correlation, composition, areal distribution, and thickness of Eocene stratigraphic units, greater GreenRiver basin, Wyoming, Utah, and Colorado[R]. Washington: United States Government Printing Office, 1992.
[7] DYNI J R.Geology and resources of some world oil-shale deposits[J]. Estonian Academy Publishers, 2003, 20(3): 193-252.
[8] 李苗苗, 马素萍, 夏燕青, 等. 泌阳凹陷核桃园组湖相烃源岩微观形态特征与形成机制[J]. 岩性油气藏, 2014, 26(3): 45-50.
LI Miaomiao, MA Suping, XIA Yanqing, et al.Microscopic morphology and formation mechanism of lacustrine source rocks of Hetaoyuan Formation in Biyang Sag[J]. Lithologic Reservoirs, 2014, 26(3): 45-50.
[9] CABESTRERO Ó, SANZ-MONTERO M E,ARREGUI L, et al.Seasonal variability of mineral formation in microbial mats subjected to drying and wetting cycles in alkaline and hypersaline sedimentary environments[J]. Aquatic Geochemistry, 2018, 24(1): 79-105.
[10] PECORAINO G D, ALESSANDRO W.The other side of the coin: Geochemistry of alkaline lakes in volcanic areas[M]. Berlin: Springer-Verlag, 2015: 219-237.
[11] HERNÁNDEZ P A, MELIÁN G, GIAMMANCO S, et al. Contribution of CO2 and H2S emitted to the atmosphere by plume and diffuse degassing from volcanoes: The Etna volcano case study[J]. Surveys in Geophysics, 2015, 36(3): 327-349.
[12] 黄昌武. 中国石油2017年十大科技进展[J]. 石油勘探与开发, 2018, 45(2): 357-358.
HUANG Chuangwu.The 10 great advances of petroleum science and technology in 2017[J]. Petroleum Exploration and Development, 2018, 45(2): 357-358.
[13] 尤兴弟. 准噶尔盆地西北缘风城组沉积相探讨[J]. 新疆石油地质, 1986, 7(1): 47-52.
YOU Xingdi.Discuss on the lower Permian Fengcheng Formation in the northwest margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 1986, 7(1): 47-52.
[14] BIAN W H, HORNUNG J, LIU Z H, et al.Sedimentary and palaeoenvironmental evolution of the Junggar Basin, Xinjiang, northwest China[J]. Palaeoenvironments, 2010, 90(3): 175-186.
[15] 曹剑, 雷德文, 李玉文, 等. 古老碱湖优质烃源岩: 准噶尔盆地下二叠统风城组[J]. 石油学报, 2015, 36(7): 781-790.
CAO Jian, LEI Dewen, LI Yuwen, et al.Ancient high-quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng Formation, Junggar Basin[J]. Acta Petrolei Sinica, 2015, 36(7): 781-790.
[16] 汪梦诗, 张志杰, 周川闽, 等. 准噶尔盆地玛湖凹陷下二叠统风城组碱湖岩石特征与成因[J]. 古地理学报, 2018, 20(1): 147-162.
WANG Mengshi, ZHANG Zhijie, ZHOU Chuanmin, et al.Lithological characteristics and origin of alkaline lacustrine of the Lower Permain Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Journal of Palaeogeography, 2018, 20(1): 147-162.
[17] 周张健. 蒙脱石伊利石化的控制因素、转化机制及其转化模型的研究综述[J]. 地质科技情报, 1994, 13(4): 41-46.
ZHOU Zhangjian.Summary of the studying for illitization of the smectite on its controlling factors, transformation mechanism and models[J]. Geological Science and Technology Information, 1994, 13(4): 41-46.
[18] WUNDER B, STEFANSKI J, WIRTH R.Al-B substitution in the system albite(NaAlSi3O8)-reedmergnerite(NaBSi3O8)[J]. European Joural of Mineralogy, 2013, 25(4): 499-508.
[19] 冯玉辉, 边伟华, 顾国忠, 等. 中基性火山岩井约束地震岩相刻画方法[J]. 石油勘探与开发, 2016, 43(2): 228-236.
FENG Yuhui, BIAN Weihua, GU Guozhong, et al.A drilling data-constrained seismic mapping for intermediate-mafic volcanic facies[J]. Petroleum Exploration and Development, 2016, 43(2): 228-236.
[20] 冯有良, 张义杰, 王瑞菊, 等. 准噶尔盆地西北缘风城组白云岩成因及油气富集因素[J]. 石油勘探与开发, 2011, 38(6): 685-692.
FENG Youliang, ZHANG Yijie, WANG Ruiju, et al.Dolomites genesis and hydrocarbon enrichment of the Fengcheng Formation in the northwestern margin of Junggar Basin[J]. Petroleum Exploration and Development, 2011, 38(6): 685-692.
[21] 匡立春, 唐勇, 雷德文, 等. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力[J]. 石油勘探与开发, 2012, 39(6): 657-667.
KUANG Lichun, TANG Yong, LEI Dewen, et al.Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2012, 39(6): 657-667.
[22] 秦志军, 陈丽华, 李玉文, 等. 准噶尔盆地玛湖凹陷下二叠统风城组碱湖古沉积背景[J]. 新疆石油地质, 2016, 37(1): 1-6.
QIN Zhijun, CHEN Lihua, LI Yuwen, et al.Paleo-sedimentary setting of the Lower Permian Fengcheng alkali lake in Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2016, 37(1): 1-6.
[23] 郑民, 李建忠, 吴晓智, 等. 致密储集层原油充注物理模拟: 以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 石油勘探与开发, 2016, 43(2): 219-227.
ZHENG Min, LI Jianzhong, WU Xiaozhi, et al.Physical modeling of oil charging in tight reservoirs: A case study of Permian Lucaogou Formation in Jimsar Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(2): 219-227.
[24] 袁选俊, 林森虎, 刘群, 等. 湖盆细粒沉积特征与富有机质页岩分布模式: 以鄂尔多斯盆地延长组长7油层组为例[J]. 石油勘探与开发, 2015, 42(1): 34-43.
YUAN Xuanjun, LIN Senhu, LIU Qun, et al.Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(1): 34-43.
[25] 汪凯明, 罗顺社. 燕山地区中元古界高于庄组和杨庄组地球化学特征及环境意义[J]. 矿物岩石地球化学通报, 2009, 28(4): 356-364.
WANG Kaiming, LUO Shunshe.Geochemical characteristics and environmental significance of Gaoyuzhuang and Yangzhuang Formations in Yanshan region[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2009, 28(4): 356-364.
[26] 郑一丁, 雷裕红, 张立强, 等. 鄂尔多斯盆地东南部张家滩页岩元素地球化学、古沉积环境演化特征及油气地质意义[J]. 天然气地球科学, 2015, 26(7): 1395-1404.
ZHENG Yiding, LEI Yuhong, ZHANG Liqiang, et al.Charactersitics of element geochemistry and paleosedimentary environment evolution of Zhangjiatan Shale in the southeast of Ordos Basin and its geological significance for oil and gas[J]. Natural Gas Geoscience, 2015, 26(7): 1395-1404.
[27] 王敏芳, 黄传炎, 徐志诚, 等. 综述沉积环境中古盐度的恢复[J]. 新疆石油天然气, 2006, 2(1): 9-12.
WANG Minfang, HUANG Chuanyan, XU Zhicheng, et al.Review on paleosalinity recovery in sedimentary environment in sedimentary environment[J]. Xinjiang Oil & Gas, 2006, 2(1): 9-12.
[28] 潘晓添. 准噶尔盆地西北缘风城组湖相热液白云岩形成机理[D]. 成都: 成都理工大学, 2013.
PAN Xiaotian.Forming mechanism of Fengcheng Formation of lacustrine hydrothermal dolomite in the Junggar Basin in northwestern margin[D]. Chengdu: Chengdu Univerisity of Technology, 2013.
[29] 范玉海, 屈红军, 王辉, 等. 微量元素分析在判别沉积介质环境中的应用: 以鄂尔多斯盆地西部中区晚三叠世为例[J]. 中国地质, 2012, 39(2): 382-389.
FAN Yuhai, QU Hongjun, WANG Hui, et al.The application of trace elements analysis to identifying sedimentary media environment: A case study of late Triassic strata in the middle part of western Ordos Basin[J]. Geology in China, 2012, 39(2): 382-389.
[30] 梁钰, 侯读杰, 张金川, 等. 海底热液活动与富有机质烃源岩发育的关系: 以黔西北地区下寒武统牛蹄塘组为例[J]. 油气地质与采收率, 2014, 21(4): 28-32.
LIANG Yu, HOU Dujie, ZHANG Jinchuan, et al.Hydrothermal activities on the seafloor and evidence of organic-rich source rock from the lower Cambrian Niutitang formation, northwestern Guizhou[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(4): 28-32.
[31] BOSTRÖM K, PETERSON M N A. The origin of aluminium-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise[J]. Marine Geology, 1969, 7(5): 427-447.
[32] CONG H, LIMING J, YUANDONG W, et al.Characteristics of hydrothermal sedimentation process in the Yanchang Formation, south Ordos Basin, China: Evidence from element geochemistry[J]. Sedimentary Geology, 2016, 345: 33-41.
[33] 熊小辉, 肖加飞. 沉积环境的地球化学示踪[J]. 地球与环境, 2011, 39(3): 405-414.
XIONG Xiaohui, XIAO Jiafei.Geochemical indicators of sedimentary environments: A summary[J]. Earth and Environment, 2011, 39(3): 405-414.
[34] PAOLA D L, ENRICO D, GIOVANNI M, et al.Geology and geochemistry of Jurassic pelagic sediments, Scisti silicei Formation, southern Apennines, Italy[J]. Sedimentary Geology, 2002, 150(3): 229-246.
[35] 冯乔, 柳益群, 郝建荣. 三塘湖盆地芦草沟组烃源岩及其古环境[J]. 沉积学报, 2004, 22(3): 513-517.
FENG Qiao, LIU Yiqun, HAO Jianrong.The source rock and its palaeo-environment of Lucaogou Formation, Permian in Santanghu Basin[J]. Acta Sedimentologica Sinica, 2004, 22(3): 513-517.
[36] 王圣柱, 张奎华, 金强. 准噶尔盆地哈拉阿拉特山地区原油成因类型及风城组烃源岩的发现意义[J]. 天然气地球科学, 2014, 25(4): 595-602.
WANG Shengzhu, ZHANG Kuihua, JIN Qiang.The genetic types of crude oils and the petroleum geological significance of the Fengcheng Formation[J]. Natural Gas Geoscience, 2014, 25(4): 595-602.
文章导航

/