油气勘探

厚壳蛤滩沉积成岩特征及对储集层的控制作用——以伊拉克H油田白垩系Mishrif组为例

  • 余义常 ,
  • 孙龙德 ,
  • 宋新民 ,
  • 郭睿 ,
  • 高兴军 ,
  • 林敏捷 ,
  • 衣丽萍 ,
  • 韩海英 ,
  • 李峰峰 ,
  • 刘航宇
展开
  • 1. 中国石油勘探开发研究院,北京 100083;
    2. 中国石油大庆油田有限责任公司,黑龙江大庆 163002;
    3. 北京大学地球与空间科学学院,北京 100871
余义常(1991-),男,湖北孝感人,中国石油勘探开发研究院博士研究生,主要从事碳酸盐岩开发地质研究。地址:北京市海淀区学院路20号,中国石油勘探开发研究院中东研究所,邮政编码:100083。Email:yuyichang@petrochina.com.cn.

收稿日期: 2018-05-23

  修回日期: 2018-07-23

  网络出版日期: 2018-10-09

基金资助

国家科技重大专项(2017ZX05030-001); 中国石油天然气集团有限公司科技重大专项(2017D-4406)

Sedimentary diagenesis of rudist shoal and its control on reservoirs: A case study of Cretaceous Mishrif Formation, H Oilfield, Iraq

  • YU Yichang ,
  • SUN Longde ,
  • SONG Xinmin ,
  • GUO Rui ,
  • GAO Xingjun ,
  • LIN Minjie ,
  • YI Liping ,
  • HAN Haiying ,
  • LI Fengfeng ,
  • LIU Hangyu
Expand
  • 1. Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China;
    2. Daqing Oilfield Co. Ltd., PetroChina, Daqing 163002, China;
    3. School of Earth and Space Sciences, Peking University, Beijing 100871, China

Received date: 2018-05-23

  Revised date: 2018-07-23

  Online published: 2018-10-09

摘要

综合利用岩心、铸体薄片、全岩分析、常规物性及高压压汞测试等资料,研究伊拉克H油田白垩系Mishrif组厚壳蛤滩沉积成岩特征及对储集层的控制作用。Mishrif组厚壳蛤滩在高位体系域发育,分布于水动力强的台地边缘古地貌高处。根据相对海平面变化、厚壳蛤滩的岩性演化和沉积构造特征,将单个完整厚壳蛤滩划分为A、B、C、D共4个岩性段。A段为低角度交错的似球粒-厚壳蛤泥粒灰岩,B段为低角度交错及平行层理的砂屑-厚壳蛤颗粒灰岩,C段为平行层理的厚壳蛤砾屑灰岩,D段为水平层理的炭质泥岩。单滩体完整沉积序列多受到破坏,多个单滩体叠置形成厚壳蛤滩体,单滩体厚度和岩性组合纵向上呈规律变化。厚壳蛤滩成岩作用具有“强溶蚀、弱胶结、较强压实”的特征,形成了以粒间孔、粒间溶孔和铸模孔为主,含溶蚀孔洞的孔隙型储集层,且以大于5 μm的粗孔喉为主,为中高孔、高渗储集层。单滩体内部及单滩体之间存在岩性反韵律,从下至上泥晶含量降低、溶蚀增强、胶结减弱、孔喉变大、物性变好。处于高位体系域顶部的MB2-1小层厚壳蛤滩的厚度最大,大气淡水淋滤更为充分,溶蚀最为显著,孔喉最大,是Mishrif组最优质的储集层。图13表1参32

本文引用格式

余义常 , 孙龙德 , 宋新民 , 郭睿 , 高兴军 , 林敏捷 , 衣丽萍 , 韩海英 , 李峰峰 , 刘航宇 . 厚壳蛤滩沉积成岩特征及对储集层的控制作用——以伊拉克H油田白垩系Mishrif组为例[J]. 石油勘探与开发, 2018 , 45(6) : 1007 -1019 . DOI: 10.11698/PED.2018.06.08

Abstract

Based on the core, cast thin section, whole rock analysis, conventional physical properties and high pressure mercury intrusion test, the sedimentary diagenesis characteristics of rudist shoal in Cretaceous Mishrif Formation of H Oilfield, Iraq and its control on the reservoir were studied. The rudist shoal of the Mishrif Formation develops in the high-stand systems tract and is distributed in the high places of paleogeomorphology on the edge of platform with strong hydrodynamic force. According to the relative sea level changes, lithologic evolution and sedimentary structure characteristics of the rudist shoal, the single rudist shoal is divided into four lithologic sections: A, B, C and D, that is, low-angle cross-bedding pelletoids-rudist packstone, low-angle cross-bedding and parallel bedding arene-rudist grainstone, parallel bedding rudist gravel limestone, and horizontal bedding carbonaceous mudstone. The complete sedimentary sequence of a single rudist shoal is often disrupted. Several rudist shoals superimpose to form thick rudist shoal sediment. The single rudist shoal thickness and lithologic sections assemblage change regularly in vertical direction. The rudist shoal has the characteristics of “strong dissolution, weak cementation and strong compaction”, forming pore-type reservoir with intergranular pores, intergranular dissolved pores, mold pores, and dissolved pores. With mainly coarse pore throats larger than 5 μm, the reservoir is of medium-high porosity and high permeability. There is lithological reverse cycles inside single shoals and between single shoals, with content of mud crystals decreasing from the bottom to the top, dissolution increasing, cementation decreasing in strength, pore throats getting larger, and physical properties turning better. The rudist shoal of MB2-1 at the top of the high-stand system tract has the largest thickness, moreover, subject to the strongest atmospheric freshwater leaching, this layer has the most significant dissolution and the largest pore throat, so it is the best reservoir of the Mishrif Formation.

参考文献

[1] ROEHL P O, CHOQUETTE P W.Introduction: Carbonate petroleum reservoirs[M]. Berlin: Springer Verlag, 1985: 1-15.
[2] 范嘉松. 世界碳酸盐岩油气田的储层特征及其成藏的主要控制因素[J]. 地学前缘, 2005, 12(3): 23-30.
FAN Jiasong.Characteristics of carbonate reservoirs for oil and gas fields in the world and essential controlling factors for their formation[J]. Earth Science Frontiers, 2005, 12(3): 23-30.
[3] 张宁宁, 何登发, 孙衍鹏, 等. 全球碳酸盐岩大油气田分布特征及其控制因素[J]. 中国石油勘探, 2014, 19(6): 54-65.
ZHANG Ningning, HE Dengfa, SUN Yanpeng, et al.Distribution patterns and controlling factors of giant carbonate rock oil and gas fields worldwide[J]. China Petroleum Exploration, 2014, 19(6): 54-65.
[4] 刘文汇, 腾格尔, 王晓锋, 等. 中国海相碳酸盐岩层系有机质生烃理论新解[J]. 石油勘探与开发, 2017, 44(1): 155-164.
LIU Wenhui, BORJIGIN Tenger, WANG Xiaofeng, et al.New knowledge of hydrocarbon generating theory of organic matter in Chinese marine carbonates[J]. Petroleum Exploration and Development, 2017, 41(1): 155-164.
[5] KAUFFMAN E G, JOHNSON C C.The morphological and ecological evolution of middle and upper Cretaceous reef-building rudistids[J]. PALAIOS, 1988, 3(2): 194-216.
[6] STANLEY G D.The evolution of modern corals and their early history[J]. Earth Science Reviews, 2003, 60(3): 195-225.
[7] SKELTON P W.The Cretaceous world[M]. London: Cambridge University Press, 2003.
[8] 王成善, 胡修棉. 白垩纪世界与大洋红层[J]. 地学前缘, 2005, 12(2): 11-21.
WANG Chengshan, HU Xiumian.Cretaceous world and oceanic red beds[J]. Earth Science Frontiers, 2005, 12(2): 11-21.
[9] AL-AMERI T K, AL-KKAFAJI A J, ZUMBERGE J. Petroleum system analysis of the Mishrif reservoir in the Ratawi, Zubair, North and South Rumaila oil fields, southern Iraq[J]. GeoArabia, 2009, 14(4): 91-108.
[10] JOHNSON C C.The rise and fall of Rudist reefs[J]. American Scientist, 2002, 90(2): 148-153.
[11] SADOONI F N.The nature and origin of Upper Cretaceous basin-margin rudist buildups of the Mesopotamian Basin, southern Iraq, with consideration of possible hydrocarbon stratigraphic entrapment[J]. Cretaceous Research, 2005, 26(2): 213-244.
[12] RAO X, SKELTON P W, SHA J, et al.Mid-Cretaceous rudists (Bivalvia: Hippuritida) from the Langshan Formation, Lhasa block, Tibet[J]. Papers in Palaeontology, 2016, 1(4): 401-424.
[13] AQRAWI A A M, GOFF J C, HORBURY A D, et al. The Petroleum Geology of Iraq[M]. Beaconsfield: Scientific Press, 2010.
[14] 王君, 郭睿, 赵丽敏, 等. 颗粒滩储集层地质特征及主控因素: 以伊拉克哈法亚油田白垩系Mishrif组为例[J]. 石油勘探与开发, 2016, 43(3): 367-377.
WANG Jun, GUO Rui, ZHAO Limin, et al.Geological features of grain bank reservoirs and the main controlling factors: A case study on Cretaceous Mishrif Formation, Halfaya Oilfield, Iraq[J]. Petroleum Exploration and Development, 2016, 43(3): 367-377.
[15] 王昱翔, 周文, 郭睿, 等. 伊拉克哈勒法耶油田Mishrif组滩相储层特征及其成因分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1007-1020.
WANG Yuxiang, ZHOU Wen, GUO Rui, et al.Shoal facies reservoir characteristics and genesis of Mishrif Formation in Halfaya Oilfield, Iraq[J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1007-1020.
[16] ZHONG Y, ZHOU L, TAN X, et al.Characteristics of depositional environment and evolution of Upper Cretaceous Mishrif Formation, Halfaya Oilfield, Iraq based on sedimentary microfacies analysis[J]. Journal of African Earth Sciences, 2018, 140: 151-168.
[17] ZHONG Y, TAN X, ZHAO L, et al. Identification of facies- controlled eogenetic karstification in the Upper Cretaceous of the Halfaya oilfield and its impact on reservoir capacity[J/OL]. Geological Journal, 2018:1-16[2018-07-23]. https://doi.org/10.1002/gj.3193.
[18] 金值民, 谭秀成, 郭睿, 等.伊拉克哈法亚油田白垩系Mishrif组碳酸盐岩孔隙结构及控制因素[J/OL].沉积学报, 2018: 1-16[2018-07- 23].https://doi.org/10.14027/j.issn.1000-0550.2018078.
JIN Zhimin, TAN Xiucheng, GUO Rui, et al.Pore structure characteristics and control factors of carbonate reservoirs: The Cretaceous Mishrif Formation, Halfaya Oilfield, Iraq[J/OL]. Acta Sedimentologica Sinica, 2018:1-16[2018-07-23]. https://doi.org/10.14027/j.issn.1000-0550.2018078.
[19] MAHDI T A, AQRAWI A A M, HORBURY A D,et al. Sedimentological characterization of the mid-Cretaceous Mishrif reservoir in southern Mesopotamian Basin, Iraq[J]. Geoarabia, 2013, 18(1): 139-174.
[20] MAHDI T A, AQRAWI A A M.Sequence stratigraphic analysis of the mid-Cretaceous Mishrif Formation, southern Mesopotamian Basin, Iraq[J]. Journal of Petroleum Geology, 2014, 37(3): 287-312.
[21] MAHDI T A, AQRAWI A A M. Role of facies diversity and cyclicity on the reservoir quality of the mid-Cretaceous Mishrif Formation in the southern Mesopotamian Basin, Iraq[J]. Geological Society London Special Publications, 2017: SP435.19.
[22] MORO A, HORVAT A, TOMIĆ V, et al.Facies development and paleoecology of rudists and corals: An example of Campanian transgressive sediments from northern Croatia, northeastern Slovenia, and northwestern Bosnia[J]. Facies, 2016, 62(3): 1-19.
[23] PASCUALCEBRIAN E, GÖTZ S, BOVERARNAL T, et al. Calcite/ aragonite ratio fluctuations in Aptian rudist bivalves: Correlation with changing temperatures[J]. Geology, 2016, 44(2): 135-138.
[24] WILSON J L.Carbonate facies in geologic history[M]. Berlin: Springer, 1975: 471.
[25] AQRAWI A A M, GOFF J C, HORBURY A D, et al. The petroleum geology of Iraq[M]. Beaconsfield: Scientific Press, 2010: 200-207.
[26] 伏美燕, 赵丽敏, 段天向, 等. 伊拉克HF油田Mishrif组厚壳蛤滩相储层沉积与早期成岩特征[J]. 中国石油大学学报(自然科学版), 2016, 40(5): 1-9.
FU Meiyan, ZHAO Limin, DUAN Tianxiang, et al.Reservoir and early diagenesis characteristics of rudist shoal of Mishrif Formation in HF Oilfield of Iraq[J]. Journal of China University of Petroleum(Edition of Natural Science), 2016, 40(5): 1-9.
[27] 邓亚, 郭睿, 田中元, 等. 碳酸盐岩储集层隔夹层地质特征及成因: 以伊拉克西古尔纳油田白垩系Mishrif组为例[J]. 石油勘探与开发, 2016, 43(1): 136-144.
DENG Ya, GUO Rui, TIAN Zhongyuan, et al.Geologic features and genesis of the barriers and intercalations in carbonates: A case study of the Cretaceous Mishrif Formation, West Qurna oil field, Iraq[J]. Petroleum Exploration and Development, 2016, 43(1): 136-144.
[28] 李凌, 谭秀成, 夏吉文, 等. 海平面升降对威远寒武系滩相储层的影响[J]. 天然气工业, 2008, 28(4): 19-21.
LI Ling, TAN Xiucheng, XIA Jiwen, et al.Influences of eustatic movement on the Cambrian reservoirs of bank facies in Weiyuan gas field, the Sichuan Basin[J]. Natural Gas Industry, 2008, 28(4): 19-21.
[29] NEUMANN A C, MACINTYRE I G.Reef response to sea level rise: Keep-up, catch-up or give-up[C]//Proceedings of the Fifth International Coral Reef Congress. Tahiti: International Coral Reef Society, 1985: 105-110.
[30] SCHLAGER W.Stratigraphic Response of a carbonate platform to relative sea level changes: Broken ridge, southeast Indian Ocean: Discussion (1)[J]. AAPG Bulletin, 1992, 76(7): 1034-1036.
[31] SCHLAGER W,REIJMER J J G, DROXLER A. Highstand shedding of carbonate platforms[J]. Journal of Sedimentary Research, 1994, 64(3): 270-281.
[32] 胡明毅, 魏欢, 邱小松,等. 鄂西利川见天坝长兴组生物礁内部构成及成礁模式[J]. 沉积学报, 2012, 30(1): 33-42.
HU Mingyi, WEI Huan, QIU Xiaosong, et al.Reef composition and their forming models of Changxing Formationin Jiantianba section of Lichuan, Western Hubei[J]. Acta Sedimentologica Sinica, 2012, 30(1): 33-42.
文章导航

/