石油工程

致密砂岩水平井多段压裂裂缝扩展规律

  • 刘乃震 ,
  • 张兆鹏 ,
  • 邹雨时 ,
  • 马新仿 ,
  • 张一诺
展开
  • 1. 中国石油集团长城钻探工程有限公司,北京 100101;
    2. 中国石油大学(北京),北京 102249
刘乃震(1960-),男,辽宁昌图人,博士,中国石油集团长城钻探工程有限公司教授级高级工程师,主要从事钻井、完井、储集层改造方面的研究与管理工作。地址:北京市朝阳区安立路101号名人大厦,邮政编码:100101。E-mail: lmlm1985@163.com

收稿日期: 2018-04-19

  修回日期: 2018-07-06

  网络出版日期: 2018-09-29

Propagation law of hydraulic fractures during multi-staged horizontal well fracturing in a tight reservoir

  • LIU Naizhen ,
  • ZHANG Zhaopeng ,
  • ZOU Yushi ,
  • MA Xinfang ,
  • ZHANG Yinuo
Expand
  • 1. CNPC Great Wall Drilling Company, Beijing 100101, China;
    2. China University of Petroleum (Beijing), Beijing 102249, China

Received date: 2018-04-19

  Revised date: 2018-07-06

  Online published: 2018-09-29

摘要

基于真三轴水力压裂模拟系统,开展已压裂缝内流体压力、段间距、射孔参数、水平应力差和水平井段固井质量对致密砂岩储集层多裂缝扩展形态影响的实验。通过岩样剖分和压力曲线特征的类比分析得到以下认识:已压缝处于临界闭合状态时,高水平应力差和小段间距将导致多裂缝合并,而已压缝内高净压力和缝宽不对称分布可能抑制后续裂缝扩展;较大段间距使得后续裂缝处于诱导应力递减区域,降低应力干扰程度;采用大密度深穿透射孔,有利于降低裂缝起裂压力;缝内净压力一定时,低水平应力差将增大水平应力反转程度,增大后续裂缝偏转角度;水平段固井质量较差时,裂缝在井筒与地层结合处起裂,形成纵向缝;各段裂缝起裂压力呈上升趋势,压力增长幅度可达30%;形成横切缝时,起裂后压力迅速下降,延伸压力低;裂缝发生偏转时,起裂后压力波动下降,延伸压力较高,为迂曲窄缝;形成纵向缝时,压力剧烈波动上升,呈现多峰值特征,起裂阶段和延伸阶段区别不明显。图16表1参26

本文引用格式

刘乃震 , 张兆鹏 , 邹雨时 , 马新仿 , 张一诺 . 致密砂岩水平井多段压裂裂缝扩展规律[J]. 石油勘探与开发, 2018 , 45(6) : 1059 -1068 . DOI: 10.11698/PED.2018.06.14

Abstract

A novel laboratory simulation method for modeling multi-staged fracturing in a horizontal well was established based on a true tri-axial hydraulic fracturing simulation system. Using this method, the influences of net pressure in hydraulic fracture, stage spacing, perforation parameter, horizontal stress bias and well cementation quality on the propagation geometry of multiple fractures in a tight sandstone formation were studied in detail. The specimen splitting and analogy analysis of fracturing curve patterns reveals: Multiple fractures tend to merge under the condition of high horizontal stress bias and short stage spacing with pre-existing hydraulic fractures under critical closure situation, and the propagation of subsequent fractures is possibly suppressed because of high net pressure in pre-created fractures and asymmetric distribution of fracture width. And the subsequently created fractures are situated in the induced stress decreasing zone due to lone stage spacing, leading to weak stress interference, and perforation with intense density and deep penetration facilitates the decrease of initiation fracture pressure. The deflection angle of subsequent fracture and horizontal stress variation tend to be amplified under low horizontal bias with constant net pressure in fractures. The longitudinal fracture is likely to be initiated at the interface of wellbore and concrete sample with poor cementation quality. The initiation fracture pressure of the different stages increases in turn, with the largest increase of 30%. Pressure quickly declines after initiation with low propagation pressure when the transverse hydraulic fracture is formed. The pressure reduces with fluctuation after the initiation of fracture when the fracture deflects, the extension pressure is high, and the fracture formed is tortuous and narrow. There is a violently fluctuant rise of pressure with multiple peak values when longitudinal fracture created, and it is hard to distinguish the features between the initiation stage and propagation stage.

参考文献

[1] 吴奇, 胥云, 王晓泉, 等. 非常规油气藏体积改造技术: 内涵、优化设计与实现[J]. 石油勘探与开发, 2012, 39(3): 252-258.
WU Qi, XU Yun, WANG Xiaoquan, et al.Volume fracturing technology of unconventional reservoirs: Connotation, optimization design and implementation[J]. Petroleum Exploration and Development, 2012, 39(3): 252-258.
[2] 胥云, 陈铭, 吴奇, 等. 水平井体积改造应力干扰计算模型及其应用[J]. 石油勘探与开发, 2016, 43(5): 780-786.
XU Yun, CHEN Ming, WU Qi, et al.Stress interference calculation model and its application in volume stimulation of horizontal wells[J]. Petroleum Exploration and Development, 2016, 43(5): 780-786.
[3] CIPOLLA C L, WARPINSKI N R, MAYERHOFER M J, et al.The relationship between fracture complexity, reservoir properties, and fracture treatment design[R].SPE 115769, 2008.
[4] MILLER C K, WATERS G A, RYLANDER E I.Evaluation of production log data from horizontal wells drilled in organic shales[R]. SPE 144326, 2011.
[5] WARPINSKI N R, BRANAGAN P T.Altered-stress fracturing[J]. Journal of Petroleum Technology, 1989, 41(9): 990-997.
[6] SOLIMAN M Y, HUNT J L, RABAA A M.Fracturing aspects of horizontal wells[J]. Journal of Petroleum Technology, 1990, 42(8): 966-973.
[7] OLSON J E, TALEGHANI A D.Modeling simultaneous growth of multiple hydraulic fractures and their interaction with natural fractures[R]. SPE 119739, 2009.
[8] WATERS G A, DEAN B K, DOWNIE R C, et al.Simultaneous hydraulic fracturing of adjacent horizontal wells in the Woodford Shale[R].SPE 119635, 2009.
[9] BUNGER A P, JEFFREY R G, KEAR J, et al.Experimental investigation of the interaction among closely spaced hydraulic fractures[J]. Strength of Materials, 2011, 19(8): 1160-1165.
[10] WU K, OLSON J E.Simultaneous multi-fracture treatments: Fully coupled fluid flow and fracture mechanics for horizontal wells[R].SPE 167626, 2014.
[11] 潘林华, 张士诚, 程礼军, 等. 水平井“多段分簇”压裂簇间干扰的数值模拟[J]. 天然气工业, 2014, 34(1): 74-79.
PAN Linhua, ZHANG Shicheng, CHENG Lijun, et al.A numerical simulation of the inter-cluster interference in multi-cluster staged fracking for horizontal wells[J]. Natural Gas Industry, 2014, 34(1): 74-79.
[12] 郭建春, 周鑫浩, 邓燕. 页岩气水平井组拉链压裂过程中地应力的分布规律[J]. 天然气工业, 2015, 35(7): 44-48.
GUO Jianchun, ZHOU Xinhao, DENG Yan.Distribution rules of earth stress during zipper fracturing of shale gas horizontal cluster wells[J]. Natural Gas Industry, 2015, 35(7): 44-48.
[13] 赵金洲, 陈曦宇, 刘长宇, 等. 水平井分段多簇压裂缝间干扰影响分析[J]. 天然气地球科学, 2015, 26(3): 533-538.
ZHAO Jinzhou, CHEN Xiyu, LIU Changyu, et al.The analysis of crack interaction in multi-stage horizontal fracturing[J]. Natural Gas Geoscience, 2015, 26(3): 533-538.
[14] ZOU Y, ZHANG S C, MA X F, et al.Numerical investigation of hydraulic fracture network propagation in naturally fractured shale formations[J]. Journal of Structural Geology, 2016, 84: 1-13.
[15] GREEN A E, SNEDDON I N.The distribution of stress in the neighborhood of a crack in an elastic solid[J]. Proceedings of the Royal Society of London, 1946, 187(1009): 229-260.
[16] SNEDDON I N, ELLIOT H A.The opening of a griffith crack under internal pressure[J]. Quarterly of Applied Mathematics, 1946, 4(3): 262-267.
[17] 曾凡辉, 郭建春, 刘恒, 等. 致密砂岩气藏水平井分段压裂优化设计与应用[J]. 石油学报, 2013, 34(5): 959-968.
ZENG Fanhui, GUO Jianchun, LIU Heng, et al.Optimization design and application of horizontal well staged fracturing in tight gas reservoirs[J]. Acta Petrolei Sinica, 2013, 34(5): 959-968.
[18] 包劲青, 刘合, 张广明, 等. 分段压裂裂缝扩展规律及其对导流能力的影响[J]. 石油勘探与开发, 2017, 44(2): 281-288.
BAO Jinqing, LIU He, ZHANG Guangming, et al.Fracture propagation laws in staged hydraulic fracturing and their effects on fracture conductivities[J]. Petroleum Exploration and Development, 2017, 44(2): 281-288.
[19] 赵金洲, 陈曦宇, 李勇明, 等. 水平井分段多簇压裂模拟分析及射孔优化[J]. 石油勘探与开发, 2017, 44(1): 117-124.
ZHAO Jinzhou, CHEN Xiyu, LI Yongming, et al.Numerical simulation of multi-stage fracturing and optimization of perforation in a horizontal well[J]. Petroleum Exploration and Development, 2017, 44(1): 117-124.
[20] 陈铭, 胥云, 吴奇, 等. 水平井体积改造多裂缝扩展形态算法: 不同布缝模式的研究[J]. 天然气工业, 2016, 36(8): 79-87.
CHEN Ming, XU Yun, WU Qi, et al.Algorithm for multi-fracture propagation morphology in horizontal well volume fracturing: Investigation on different fracture distribution patterns[J]. Natural Gas Industry, 2016, 36(8): 79-87.
[21] MA X F, ZOU Y S, LI N, et al.Experimental study on the mechanism of hydraulic fracture growth in a glutenite reservoir[J]. Journal of Structure Geology, 2017, 97: 37-47.
[22] BEUGELSDIJK L J, PATER C J, SATO K.Experimental hydraulic fracture propagation in a multi-fractured medium[R]. SPE 59419-MS, 2000.
[23] 柳贡慧, 庞飞, 陈治喜. 水力压裂模拟实验中的相似准则[J]. 中国石油大学学报(自然科学版), 2000, 24(5): 45-48.
LIU Gonghui, PANG Fei, CHEN Zhixi.Similarity criterion in simulation experiment of hydraulic fracturing[J]. Journal of China University of Petroleum (Edition of Natural Science), 2000, 24(5): 45-48.
[24] 马新仿, 李宁, 尹丛彬, 等. 页岩水力裂缝扩展形态与声发射解释: 以四川盆地志留系龙马溪组页岩为例[J]. 石油勘探与开发, 2017, 44(6): 974-981.
MA Xinfang, LI Ning, YIN Congbin, et al.Hydraulic fracture propagation geometry and acoustic emission interpretation: A case study of Silurian Longmaxi Formation shale in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(6): 974-981.
[25] 李根生, 刘丽, 黄中伟, 等. 水力射孔对地层破裂压力的影响研究[J]. 中国石油大学学报(自然科学版), 2006, 30(5): 42-45.
LI Gensheng, LIU Li, HUANG Zhongwei, et al.Study of effect of hydraulic perforating on formation fracturing pressure[J]. Journal of China University of Petroleum (Edition of Natural Science), 2006, 30(5): 42-45.
[26] 雷鑫, 张士诚, 许国庆, 等. 射孔对致密砂岩气藏水力压裂裂缝起裂与扩展的影响[J]. 东北石油大学学报, 2015, 39(2): 94-101.
LEI Xin, ZHANG Shicheng, XU Guoqing, et al.Effect of perforation on initiation and propagation of hydraulic fracturing in tight sandstone gas reservoirs[J]. Journal of Northeast Petroleum University, 2015, 39(2): 94-101.
文章导航

/