油气田开发

井网对溶蚀孔洞型储集层水驱开发特征的影响实验

  • 王敬 ,
  • 刘慧卿 ,
  • 张景 ,
  • 赵卫 ,
  • 黄义涛 ,
  • 康志江 ,
  • 郑松青
展开
  • 1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249;
    2. 中国石油大学(北京)教育部重点实验室,北京 102249;
    3. 中国石油新疆油田分公司勘探开发研究院,新疆克拉玛依 834000;
    4. 中国石化石油勘探开发研究院,北京 100083
王敬(1985-),男,河北衡水人,博士,中国石油大学(北京)石油工程学院副教授,主要从事油藏渗流机理、提高采收率、非常规油气开发等方面的研究。地址:北京市昌平区府学路18号,中国石油大学(北京)石油工程学院,邮政编码:102249。E-mail: wangjing8510@163.com

收稿日期: 2018-04-18

  修回日期: 2018-07-15

  网络出版日期: 2018-09-10

基金资助

国家科技重大专项“缝洞型油藏改善水驱潜力及效果预测方法研究”(2016ZX05014-003-004); 中国石油大学(北京)优秀青年学者科研基金(2462018QNXZ01)

Experiments on the influences of well pattern on water flooding characteristics of dissolution vug-cave reservoir

  • WANG Jing ,
  • LIU Huiqing ,
  • ZHANG Jing ,
  • ZHAO Wei ,
  • HUANG Yitao ,
  • KANG Zhijiang ,
  • ZHENG Songqing
Expand
  • 1. State Key Laboratory of Petroleum Resources and Prospecting in China University of Petroleum, Beijing 102249, China;
    2. MOE Key Laboratory of Petroleum Engineering in China University of Petroleum, Beijing 102249, China;
    3. Research Institute of Exploration and Development, Xinjiang Oilfield Company, PetroChina, Karamay 834000, China;
    4. Exploration and Production Research Institute, Sinopec, Beijing 100083, China

Received date: 2018-04-18

  Revised date: 2018-07-15

  Online published: 2018-09-10

摘要

根据相似准则理论,选取火山岩露头岩样建立实验模型,开展裂缝型与无裂缝型溶蚀孔洞储集层五点井网、九点井网、五点转九点井网、井位与裂缝相对位置、注入井注入速度等多种方式的水驱油开发实验,分析不同实验方案的开发指标变化规律,总结不同井网的水驱开发特征,探索最优注水开发方式。研究表明,无裂缝溶蚀孔洞型储集层,五点井网水驱波及范围小,水窜严重,采收率低,转九点井网后,采收率可较大幅度提高,但对距离较远的角井效果不明显,裂缝-溶蚀孔洞型储集层,注采井不在连通裂缝上,裂缝可以更好地沟通连通性较差的溶蚀孔洞,改善水驱开发效果;无论溶蚀孔洞型储集层有无裂缝,九点井网开发效果明显优于五点井网、五点井网转九点井网,边井开发指标优于角井,且有裂缝时更明显;九点井网水驱至高含水期,将角井转注变为交错井网后采收率可进一步提高;注入井提高注水速度,有助于提高九点井网距离较远角井的产油量,提高最终采收率,但无水采油期大幅缩短,无水采收率大幅下降。图14表3参32

本文引用格式

王敬 , 刘慧卿 , 张景 , 赵卫 , 黄义涛 , 康志江 , 郑松青 . 井网对溶蚀孔洞型储集层水驱开发特征的影响实验[J]. 石油勘探与开发, 2018 , 45(6) : 1035 -1042 . DOI: 10.11698/PED.2018.06.11

Abstract

Based on the similarity criterion, volcanic rock samples were taken from outcrops to make experimental models. Water flooding experiments of five-spot well pattern, nine-spot well pattern, five-spot to nine-spot well pattern, the relationship between relative well and fracture positions, and injection rate in dissolution vug-cave reservoirs with/without fractures were carried out to analyze variation regularities of development indexes, find out development characteristics of water flooding with different well patterns and sort out the optimal water flooding development mode. For dissolution vug-cave reservoirs without fractures, five-spot well pattern waterflooding has very small sweeping area, serious water channeling and low oil recovery. When the well pattern was adjusted from five-spot to nine-spot well pattern, oil recovery could be largely improved, but the corner well far from the injector is little affected. In dissolution vug-cave reservoirs with fractures, when the injector and producer are not connected by fractures, the fractures could effectively connect the poorly linked vugs to improve the development effect of water flooding. Whether there are fractures or not in dissolution vug-cave reservoirs, the development effect of nine-spot well-pattern is much better than that of five-spot well pattern and five-spot to nine-spot well pattern, this is more evident when there are fractures, and the edge well has better development indexes than corner well. At the high-water cut stage of water flooding with nine-spot well pattern, the oil recovery can be further improved with staggered line-drive pattern by converting the corner well into injection well. It is helpful to increase the oil production of corner well of nine-spot well pattern by increasing the injection rate, and improve ultimate oil recovery, but the water-free production period would be greatly shortened and water-free recovery would decrease.

参考文献

[1] 刘坤岩, 马丽娟, 邬兴威, 等. 塔河奥陶系薄层状孔洞储集体定量预测方法研究[J]. 地球物理学进展, 2017, 32(4): 1614-1620.
LIU Kunyan, MA Lijuan, WU Xingwei, et al.Quantitative prediction of flaggy reservoir of Ordovician Formation in Tahe Oilfield[J]. Progress in Geophysics, 2017, 32(4): 1614-1620.
[2] 许强. 塔河四区缝洞单元注水开发技术政策及效果分析[J]. 新疆石油天然气, 2008, 4(4): 77-80.
XU Qiang.Affusion technique policy of development and effect analysis in the 4th block of Tahe Oilfield[J]. Xinjiang Oil & Gas, 2008, 4(4): 77-80.
[3] 李扬, 彭小龙, 谭聪, 等. 塔河风化壳储层典型单元注水方式优化研究[J]. 科学技术与工程, 2015, 15(5): 81-85.
LI Yang, PENG Xiaolong, TAN Cong, et al.Optimization research on water injection mode in typical units of weathering crust reservoir of Tahe Oilfield[J]. Science Technology and Engineering, 2015, 15(5): 81-85.
[4] 李阳, 范智慧. 塔河奥陶系碳酸盐岩油藏缝洞系统发育模式与分布规律[J]. 石油学报, 2011, 32(1): 101-106.
LI Yang, FAN Zhihui.Developmental pattern and distribution rule of the fracture-cavity system of Ordovician carbonate reservoirs in the Tahe Oilfield[J]. Acta Petrolei Sinica, 2011, 32(1): 101-106.
[5] 金振奎, 余宽宏. 白云岩储集层埋藏溶蚀作用特征及意义: 以塔里木盆地东部下古生界为例[J]. 石油勘探与开发, 2011, 38(4): 428-434.
JIN Zhenkui, YU Kuanhong.Characteristics and significance of the burial dissolution of dolomite reservoirs: Taking the Lower Palaeozoic in eastern Tarim Basin as an example[J]. Petroleum Exploration and Development, 2011, 38(4): 428-434.
[6] 沈安江, 郑剑锋, 陈永权, 等. 塔里木盆地中下寒武统白云岩储集层特征、成因及分布[J]. 石油勘探与开发, 2016, 43(3): 340-349.
SHEN Anjiang, ZHENG Jianfeng, CHEN Yongquan, et al.Characteristics, origin and distribution of dolomite reservoirs in Lower-Middle Cambrian, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(3): 340-349.
[7] 闫相宾, 李铁军, 张涛, 等. 塔中与塔河地区奥陶系岩溶储层形成条件的差异[J]. 石油与天然气地质, 2005, 26(2): 202-207.
YAN Xiangbin, LI Tiejun, ZHANG Tao, et al.Differences between formation conditions of Ordovician karstic reservoirs in Tazhong and Tahe areas[J]. Oil & Gas Geology, 2005, 26(2): 202-207.
[8] 张云峰, 谭飞, 屈海洲, 等. 岩溶残丘精细刻画及控储特征分析: 以塔里木盆地轮古地区奥陶系风化壳岩溶储集层为例[J]. 石油勘探与开发, 2017, 44(5): 716-726.
ZHANG Yunfeng, TAN Fei, QU Haizhou, et al.Karst monadnock fine characterization and reservoir control analysis: A case from Ordovician weathering paleokarst reservoirs in Lungu area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(5): 716-726.
[9] 李阳, 侯加根, 李永强. 碳酸盐岩缝洞型储集体特征及分类分级地质建模[J]. 石油勘探与开发, 2016, 43(4): 600-606.
LI Yang, HOU Jiagen, LI Yongqiang.Features and hierarchical modeling of carbonate fracture-cavity reservoirs[J]. Petroleum Exploration and Development, 2016, 43(4): 600-606.
[10] 吕心瑞, 韩东, 李红凯. 缝洞型油藏储集体分类建模方法研究[J]. 西南石油大学学报(自然科学版), 2018, 40(1): 68-79.
LYU Xinrui, HAN Dong, LI Hongkai.Study on the classification and modeling of fracture-vug oil deposition[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2018, 40(1): 68-79.
[11] 佘敏, 寿建峰, 沈安江, 等. 碳酸盐岩溶蚀规律与孔隙演化实验研究[J]. 石油勘探与开发, 2016, 43(4): 564-572.
SHE Min, SHOU Jianfeng, SHEN Anjiang, et al.Experimental simulation of dissolution law and porosity evolution of carbonate rock[J]. Petroleum Exploration and Development, 2016, 43(4): 564-572.
[12] 石堃. 塔里木盆地中央隆起带寒武系白云岩储层特征[D]. 西安: 西安石油大学, 2017.
SHI Kun.Research on dolomite reservoir characteristics of Cambrian Formation in central uplift belt, Tarim Basin[D]. Xi’an: Xi’an Shiyou University, 2017.
[13] ZHANG Z, TONG Y, LI S, et al.Integrated reservoir delineation in Karst Carbonate: Case study of Middle Tarim Basin, West China[R]. Doha: International Petroleum Technology Conference, 2015.
[14] LI Y, LI B, WANG Q, et al.Different equivalent simulation methods for fractured-vuggy carbonate gas condensate reservoirs[R]. SPE 185762, 2017.
[15] 艾克拜尔·沙迪克, 吕媛娥, 吕海涛. 塔河油田盐体覆盖区奥陶系储层发育特征及主控因素研究[J]. 新疆地质, 2005, 23(4): 396-400.
AKBAR Sadik, LYU Yuan’e, LYU Haitao.Characteristics and main controlling factors of the formation of Ordovician reservoirs in areas covered with salt layers in Tahe Oilfield[J]. Xinjiang Geology, 2005, 23(4): 396-400.
[16] 陈新军, 蔡希源, 纪友亮, 等. 塔中奥陶系大型不整合面与风化壳岩溶发育[J]. 同济大学学报(自然科学版), 2007, 35(8): 1122-1127.
CHEN Xinjun, CAI Xiyuan, JI Youliang, et al.Relationship between large scale unconformity surface and weathering crust Karst of Ordovician in Tazhong[J]. Journal of Tongji University (Natural Science), 2007, 35(8): 1122-1127.
[17] 李阳. 碳酸盐岩缝洞型油藏开发理论与方法[M]. 北京: 中国石化出版社, 2014.
LI Yang.Theory and method for development of carbonate fractured- cavity reservoirs[M]. Beijing: China Petrochemical Press, 2014.
[18] 陈如鹤. 克拉玛依油田一区石炭系火山岩油藏地质特征及开发规律[D]. 成都: 西南石油大学, 2000.
CHEN Ruhe.Geologic characteristics and development rules of carboniferous volcanic reservoir in the 1st areas of Karamay Oilfield[D]. Chengdu: Southwest Petroleum University, 2000.
[19] 刘畅. 坨32块火山岩油藏注水开发研究[J]. 石化技术, 2016, 23(4): 268.
LIU Chang.Water flooding in Tuo 32 Block volcanic reservoir[J]. Petrochemical Technology, 2016, 23(4): 268.
[20] 郭平, 袁恒璐, 李新华, 等. 碳酸盐岩缝洞型油藏气驱机制微观可视化模型试验[J]. 中国石油大学学报(自然科学版), 2012, 36(1): 89-93.
GUO Ping, YUAN Henglu, LI Xinhua, et al.Experiments on gas injection mechanisms in carbonate fracture-cavity reservoir using microvisual model[J]. Journal of China University of Petroleum (Science & Technology Edition), 2012, 36(1): 89-93.
[21] 王璐, 杨胜来, 刘义成, 等. 缝洞型碳酸盐岩气藏多层合采供气能力实验[J]. 石油勘探与开发, 2017, 44(5): 779-787.
WANG Lu, YANG Shenglai, LIU Yicheng, et al.Experiments on gas supply capability of commingled production in a fracture-cavity carbonate gas reservoir[J]. Petroleum Exploration and Development, 2017, 44(5): 779-787.
[22] 赵澄林, 刘孟慧, 胡爱梅, 等. 特殊油气储层[M]. 北京: 石油工业出版社, 1997.
ZHAO Chenglin, LIU Menghui, HU Aimei, et al.Special oil and gas reservoirs[M]. Beijing: Petroleum Industry Press, 1997.
[23] 董冬. 火山岩储层中的一种重要储集空间: 气孔[J]. 石油勘探与开发, 1991, 18(1): 89-93.
DONG Dong.An important reservoir space in igneous oil reservoir rocks: Gas pores[J]. Petroleum Exploration and Development, 1991, 18(1): 89-93.
[24] 李辉, 李媛, 谢伟. 辽河油田东部凹陷中段火山岩油气藏成藏特征[J]. 石油地质与工程, 2011, 25(6): 5-8.
LI Hui, LI Yuan, XIE Wei.Accumulation characteristics of volcanic rocks in the middle section of Liaohe Oilfield[J]. Petroleum Geology and Engineering, 2011, 25(6): 5-8.
[25] 鲁新便. 缝洞型碳酸盐岩油藏开发描述及评价[D]. 成都: 成都理工大学, 2004.
LU Xinbian.Description and evaluation of the development of carbonate fractured-cavity reservoirs[D]. Chengdu: Chengdu University of Technology, 2004.
[26] 杨彦军. 碳酸盐岩缝洞油藏储层、流体识别及评价技术研究: 以塔河油田4、6区奥陶系为例[D]. 成都: 成都理工大学, 2007.
YANG Yanjun.Study on the recognition of fracture-vuggy carbonate reservoir and fluid along with its appraisal: Taking Ordovician reservoir of 4, 6 area in Tahe oil field as example[D]. Chengdu: Chengdu University of Technology, 2007.
[27] 孙玉凯, 罗权生, 何国貌. 三塘湖盆地马朗凹陷石炭系火山岩储集层特征及影响因素[J]. 大庆石油学院学报, 2009, 33(3): 36-42.
SUN Yukai, LUO Quansheng, HE Guomao.Reservoir characteristics and impacting factors of Carboniferous volcanics in Malang sag, Santanghu basin[J]. Journal of Daqing Petroleum Institute, 2009, 33(3): 36-42.
[28] 李红凯, 康志江. 碳酸盐岩缝洞型油藏溶蚀孔洞分类建模[J]. 特种油气藏, 2015, 22(5): 50-54.
LI Hongkai, KANG Zhijiang.Differential modeling of dissolved vugs in carbonate fracture and vug reservoirs[J]. Special Oil and Gas Reservoir, 2015, 22(5): 50-54.
[29] 蔡君, 王志章. 车排子地区石炭系火山岩溶蚀孔洞发育情况分类和分布规律[J]. 石油天然气学报, 2017, 39(5): 245-254.
CAI Jun, WANG Zhizhang.Development and distribution of dissolution pores in Carboniferous Volcanic rocks in Chepaizi Bulge[J]. Journal of Oil and Gas Technology, 2017, 39(5): 245-254.
[30] 高玉飞, 钟建华, 艾合买提江, 等. 塔河油田四区奥陶系裂缝特征及其成因机制研究[J]. 中国地质, 2009, 36(6): 1257-1267.
GAO Yufei, ZHONG Jianhua,AHMATJAN, et al. Characteristics and formation mechanism of fissures in Ordovician strata of No.4 Block, the Tahe Oilfield[J]. Geology in China, 2009, 36(6): 1257-1267.
[31] 童凯军, 刘慧卿, 张迎春, 等. 变质岩裂缝性油藏水驱油特征三维物理模拟[J]. 石油勘探与开发, 2015, 42(4): 538-544.
TONG Kaijun, LIU Huiqing, ZHANG Yingchun, et al.Three- dimensional physical modeling of waterflooding in metamorphic fractured reservoirs[J]. Petroleum Exploration and Development, 2015, 42(4): 538-544.
[32] 王敬, 刘慧卿, 宁正福, 等. 缝洞型油藏溶洞-裂缝组合体内水驱油模型及实验[J]. 石油勘探与开发, 2014, 41(1): 67-73.
WANG Jing, LIU Huiqing, NING Zhengfu, et al.Experiments on water flooding in fractured-vuggy cells in fractured-vuggy reservoirs[J]. Petroleum Exploration and Development, 2014, 41(1): 67-73.
文章导航

/