石油工程

水化作用对页岩微观结构与物性的影响

  • 薛华庆 ,
  • 周尚文 ,
  • 蒋雅丽 ,
  • 张福东 ,
  • 东振 ,
  • 郭伟
展开
  • 1. 中国石油勘探开发研究院,河北廊坊065007;
    2. 中国石油华北油田第四采油厂,河北廊坊065007
薛华庆(1982-),男,浙江瑞安人,博士,中国石油勘探开发研究院高级工程师,主要从事非常规油气实验新技术研发。地址:河北省廊坊市广阳区,中国石油勘探开发研究院新能源研究所,邮政编码:065007。E-mail:hqxue@petrochina.com.cn

收稿日期: 2018-04-03

  修回日期: 2018-07-01

  网络出版日期: 2018-08-03

基金资助

国家自然科学基金项目(51376104); 国家十三五重大科技专项(2017ZX05035002)

Effects of hydration on the microstructure and physical properties of shale

  • XUE Huaqing ,
  • ZHOU Shangwen ,
  • JIANG Yali ,
  • ZHANG Fudong ,
  • DONG Zhen ,
  • GUO Wei
Expand
  • 1. Research Institute of Petroleum Exploration & Development, PetroChina, Langfang 065007, China;
    2. The Fourth Oil Recovery Company of North China Oilfield, Langfang 065007, China

Received date: 2018-04-03

  Revised date: 2018-07-01

  Online published: 2018-08-03

摘要

利用场发射扫描电镜(FESEM)对水化作用前、后的页岩样品进行微观表征,通过微米CT扫描、孔隙度和渗透率测试实验来研究原始样品、饱和水及离心后样品的微观结构和物性参数之间的差异性。FESEM实验研究表明,水化作用对页岩中有机质的主体形态和位置、有机质孔隙没有影响。水化作用可增加页岩内的裂缝条数及宽度,主要表现为无机矿物之间裂缝的延伸和新裂缝的衍生、条带状有机质与无机矿物之间的裂缝宽度增加。不同含水饱和度条件下的微米CT扫描实验表明,水化作用强度受原生裂缝发育程度控制,原生裂缝越发育,水化作用越强。水化作用较强时,页岩裂缝的宽度可增加至原来的2~5倍。页岩孔隙度主要受有机质含量控制,其次受裂缝发育程度影响。页岩渗透率主要受裂缝发育程度控制,其次受孔隙度大小影响。水化作用后裂缝发育程度对孔隙度和渗透率均有影响,但对渗透率影响较大,对孔隙度影响较小。图10表2参21

本文引用格式

薛华庆 , 周尚文 , 蒋雅丽 , 张福东 , 东振 , 郭伟 . 水化作用对页岩微观结构与物性的影响[J]. 石油勘探与开发, 2018 , 45(6) : 1075 -1081 . DOI: 10.11698/PED.2018.06.16

Abstract

The microstructures of shale samples before and after hydration were characterized by field emission scanning electron microscopy (FESEM), and the differences in microstructure and physical parameters of original shale samples, water saturated samples and samples with water centrifugated were examined by micro CT, porosity and permeability tests. The FESEM test shows that the hydration has no effect on the main morphology, position and pores of organic matter (OM). Hydration can increase the number and width of fractures in shale, including generation of new fractures and extension of existent fractures between inorganic minerals and width increase of fractures between banded organic matter and inorganic minerals. Micro CT results of samples with different water saturations show that the intensity of hydration is dominated by primary fracture development, in other words, the more developed the primary fractures of the shale, the stronger the hydration will be. The width of fractures increased two to five times by intense hydration. The porosity of shale is mainly controlled by organic matter content and secondly influenced by the fracture development. The permeability of shale is mainly affected by fracture development and secondly by the porosity. The fracture development influenced both porosity and permeability, but more strongly on permeability than porosity.

参考文献

[1] STRUCHTEMEYER C G, ELSHAHED M S.Bacterial communities associated with hydraulic fracturing fluids in thermogenic natural gas wells in North Central Texas, USA[J]. FEMS Microbiology Ecology, 2012, 81(1): 13-25.
[2] GREGORY K B, VIDIC R D, DZOMBAK D A.Water management challenges associated with the production of shale gas by hydraulic fracturing[J]. Elements, 2011, 7(3): 181-186.
[3] ARTHUR J D, BOHM B K, COUGHLIN B J, et al.Evaluating the environmental implications of hydraulic fracturing in shale gas reservoirs[R]. SPE 121038, 2009.
[4] BINAZADEH M, XU M, ZOLFAGHARI A, et al.Effect of electrostatic interactions on water uptake of gas shales: The interplay of solution ionic strength and electrostatic double layer[J]. Energy & Fuels, 2016, 30(2): 119-131.
[5] SUN Y, BAI B, WEI M.Microfracture and surfactant impact on linear co-current brine imbibition in gas-saturated shale[J]. Energy & Fuels, 2015, 29(3): 1468-1446.
[6] VIDIC R D, BRANTLEY S L, VANDENBOSSCHE J M, et al.Impact of shale gas development on regional water quality[J]. Science, 2013, 340(6134): 1235-1239.
[7] 李俊平, 连民杰. 矿山岩石力学[M]. 北京: 冶金工业出版社, 2011: 57.
LI Junping, LIAN Minjie.Mine rock mechanics[M]. Beijing: Metallurgical Industry Press, 2011: 57.
[8] ROSHAN H, EHSANI S, MARJO C E, et al.Mechanisms of water adsorption into partially saturated fractured shales: An experimental study[J]. Fuel, 2015, 159: 628-637.
[9] MORSY S, SHENG J J.Effect of water salinity on shale reservoir productivity[J]. Advances in Petroleum Exploration & Development, 2014, 8(1): 9-14.
[10] DEHGHANPOUR H, LAN Q, SAEED Y, et al.Spontaneous imbibition of brine and oil in gas shales: Effect of water adsorption and resulting microfractures[J]. Energy & Fuels, 2013, 27(6): 3039-3049.
[11] ZHOU T, ZHANG S, YANG L, et al.Experimental investigation on fracture surface strength softening induced by fracturing fluid imbibition and its impacts on flow conductivity in shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 893-905.
[12] 康毅力, 杨斌, 李相臣, 等. 页岩水化微观作用力定量表征及工程应用[J]. 石油勘探与开发, 2017, 44(2): 301-308.
KANG Yili, YANG Bin, LI Xiangchen, et al.Quantitative characterization of micro forces in shale hydration and field applications[J]. Petroleum Exploration and Development, 2017, 44(2): 301-308.
[13] 马天寿, 陈平. 基于CT扫描技术研究页岩水化细观损伤特性[J]. 石油勘探与开发, 2014, 41(2): 227-233.
MA Tianshou, CHEN Ping.Study of meso-damage characteristics of shale hydration based on CT scanning technology[J]. Petroleum Exploration and Development, 2014, 41(2): 227-233.
[14] 石秉忠, 夏柏如, 林永学, 等. 硬脆性泥页岩水化裂缝发展的CT成像与机理[J]. 石油学报, 2012, 33(1): 137-142.
SHI Bingzhong, XIA Bairu, LIN Yongxue, et al.CT imaging and mechanism analysis of crack development by hydration in hard- brittle shale formations[J]. Acta Petrolei Sinica, 2012, 33(1): 137-142.
[15] ZHANG S, SHENG J J.Effect of water imbibition on hydration induced fracture and permeability of shale cores[J]. Journal of Natural Gas Science and Engineering, 2017, 45: 726-737.
[16] MCPHEE C, REED J, ZUBIZARRETA I.Core analysis: A best practice guide[M]. Amsterdam: Elsevier, 2015: 287-351.
[17] WANG Q, HOU Y, WU W, et al.The structural characteristics of kerogens in oil shale with different density grades[J]. Fuel, 2018, 219: 151-158.
[18] LIU X, ZENG W, LIANG L, et al.Experimental study on hydration damage mechanism of shale from the Longmaxi formation in southern Sichuan basin, China[J]. Petroleum, 2016, 2(1): 54-60.
[19] 马新仿, 李宁, 尹丛彬, 等. 页岩水力裂缝扩展形态与声发射解释: 以四川盆地志留系龙马溪组页岩为例[J]. 石油勘探与开发, 2017, 44(6): 974-981.
MA Xinfang, LI Ning, YIN Congbin, et al.Hydraulic fracture propagation geometry and acoustic emission interpretation: A case study of Silurian Longmaxi Formation shale in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(6): 974-981.
[20] 钱斌, 朱炬辉, 杨海, 等. 页岩储集层岩心水化作用实验[J]. 石油勘探与开发, 2017, 44(4): 615-621.
QIAN Bin, ZHU Juhui, YANG Hai, et al.Experiments on shale reservoirs plugs hydration[J]. Petroleum Exploration and Development, 2017, 44(4): 615-621.
[21] GAMAGE K, SCREATON E, BEKINS B, et al.Permeability- porosity relationships of subduction zone sediments[J]. Marine Geology, 2011, 279(1): 19-36.
文章导航

/