油气勘探

黑色页岩微裂缝发育控制因素——以长宁双河剖面五峰组—龙马溪组为例

  • 董大忠 ,
  • 施振生 ,
  • 孙莎莎 ,
  • 郭长敏 ,
  • 张晨晨 ,
  • 郭雯 ,
  • 管全中 ,
  • 张梦琪 ,
  • 蒋珊 ,
  • 张磊夫 ,
  • 马超 ,
  • 武瑾 ,
  • 李宁 ,
  • 昌燕
展开
  • 1. 中国石油勘探开发研究院,北京 100083;
    2. 国家能源页岩气研发(实验)中心,河北廊坊 065007;
    3. 中国石油天然气集团有限公司非常规油气重点实验室,河北廊坊 065007;
    4. 中国石化石油勘探开发研究院,北京 100083;
    5. 中国石油大学(北京),北京 102249;
    6. 北京大学地球与空间学院,北京 100871
董大忠(1962-),男,四川广元人,博士,中国石油勘探开发研究院教授级高级工程师,主要从事油气资源与发展战略、页岩气地质理论技术及勘探生产实践等方面研究工作。地址:河北省廊坊市万庄镇44号信箱,邮政编码:065007;北京市海淀区学院路20号910信箱,邮政编码:100083。E-mail:ddz@petrochina.com.cn

收稿日期: 2018-03-05

  网络出版日期: 2018-08-03

基金资助

国家自然科学基金项目“晚三叠世四川盆地不同类型三角洲内部构型及成因模式”(41572079); 国家科技重大专项“大型油气田及煤层气开发”(2017ZX05035-001)

Factors controlling microfractures in black shale: A case study of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Shuanghe Profile, Changning area, Sichuan Basin, SW China

  • DONG Dazhong ,
  • SHI Zhensheng ,
  • SUN Shasha ,
  • GUO Changmin ,
  • ZHANG Chenchen ,
  • GUO Wen ,
  • GUAN Quanzhong ,
  • ZHANG Mengqi ,
  • JIANG Shan ,
  • ZHANG Leifu ,
  • MA Chao ,
  • WU Jin ,
  • LI Ning ,
  • CHANG Yan
Expand
  • 1. Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China;
    2. National Energy Shale Gas R&D (Experiment) Center, Langfang 065007, China;
    3. CNPC Key Laboratory of Unconventional Oil & Gas Resources, Langfang 065007, China;
    4. Sinopec Exploration & Production Research Institute, Beijing 100083, China;
    5. China University of Petroleum, Beijing 102200, China;
    6. School of Earth and Space Science, Peking University, Beijing 100871, China

Received date: 2018-03-05

  Online published: 2018-08-03

摘要

以长宁双河剖面奥陶系五峰组—志留系龙马溪组为例,重点讨论黑色页岩微裂缝发育控制因素及页岩气储集层“甜点段”微裂缝成因。针对目标层段,开展了203块大薄片、203块小薄片、110块TOC样品、110块X-衍射全岩和103块主微量样品测定与分析。结果表明,黑色页岩微裂缝分为顺层缝和非顺层缝,顺层缝多为层面滑移缝、页理缝和构造雁列缝,非顺层缝主要为剪切缝和拉张缝。纵向上,龙马溪组SLM1段微裂缝密度最高,SLM2段至SLM5段微裂缝密度逐渐降低,五峰组微裂缝密度最低。微裂缝密度与黑色页岩硅质含量正相关、与碳酸盐矿物含量负相关,黑色页岩颗粒越细微裂缝密度越大。微裂缝密度受控于生物成因硅含量,生物成因硅含量越高微裂缝密度越大,在应力作用下,微裂缝优先在细粒页岩的纹层界面处形成。区域性构造活动是龙马溪组页岩气储集层“甜点段”微裂缝形成的关键因素,成岩收缩是页理缝形成的重要动力,生烃增压是微裂缝大量发育主要原因。图14参37

本文引用格式

董大忠 , 施振生 , 孙莎莎 , 郭长敏 , 张晨晨 , 郭雯 , 管全中 , 张梦琪 , 蒋珊 , 张磊夫 , 马超 , 武瑾 , 李宁 , 昌燕 . 黑色页岩微裂缝发育控制因素——以长宁双河剖面五峰组—龙马溪组为例[J]. 石油勘探与开发, 2018 , 45(5) : 763 -774 . DOI: 10.11698/PED.2018.05.02

Abstract

The dominant factors controlling development of microfractures in the black shale and the origin of microfractures in the sweet spot intervals were discussed of the Ordovician Wufeng Formation-Silurian Longmaxi Formation in Shuanghe outcrop profile, Changning, Sichuan Basin. For the target interval, holographic photograph statistics of microscopic composition of 203 big thin sections and 203 small thin sections, TOC content of 110 samples, 110 whole rocks X-ray composition, and main trace elements of 103 samples were tested and analyzed. The results show that the microfractures include bedding microfractures and non-bedding microfractures. The bedding microfractures are mostly plane slip microfractures, lamellation microfractures and echelon microfractures. The non-bedding microfractures are largely shear microfractures and tension microfractures. Vertically, the density of microfractures is the highest in SLM1 Member of Longmaxi Formation, decreases from SLM2 Member to SLM5 Member gradually, and drops to the lowest in Wufeng Formation. The microfracture density is positively correlated with siliceous content and negatively correlated with the carbonate content. The finer the grain size of the black shale, the higher the density of the microfractures is. The microfracture density is controlled by biogenic silicon: the higher the content of biogenic silicon, the higher the micro-fracture density is. Under the effect of ground stress, microfractures appear first in the lamellar interfaces. Regional tectonic movements are the key factor causing the formation of microfractures in the sweet spot interval, diagenetic contraction is the main driving force for lamellation fractures, and pressurization due to hydrocarbon generation is the major reason for the large-scale development of microcracks.

参考文献

[1] CURTIS J B.Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938.
[2] GALE J F W, REED R M, HOLDER J, et al. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments[J]. AAPG Bulletin, 2007, 91(4): 603-622.
[3] 邹才能, 丁云宏, 卢拥军, 等. “人工油气藏”理论?技术及实践[J]. 石油勘探与开发, 2017, 44(1): 144-154.
ZOU Caineng, DING Yunhong, LU Yongjun, et al.Concept, technology and practice of “man-made reservoirs” development[J]. Petroleum Exploration and Development, 2017, 44(1): 144-154.
[4] 邹才能, 赵群, 董大忠, 等. 页岩气基本特征?主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1781-1796.
ZOU Caineng, ZHAO Qun, DONG Dazhong, et al.Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017, 28(12): 1781-1796.
[5] 董大忠, 施振生, 管全中, 等. 四川盆地五峰组—龙马溪组页岩气勘探进展?挑战与前景[J]. 天然气工业, 2018, 38(4): 67-76.
DONG Dazhong, SHI Zhensheng, GUAN Quanzhong, et al.Progress, challenges and prospects of shale gas exploration in the Wufeng- Longmaxi reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(4): 67-76.
[6] GILLESPIE P, HAGEN J V, WESSELS S, et al.Hierarchical kink band development in the Appalachian Plateau decollement sheet[J]. AAPG Bulletin, 2015, 99(1): 51-76.
[7] 丁文龙, 李超, 李春燕, 等. 页岩裂缝发育主控因素及其对含气性的影响[J]. 地学前缘, 2012, 19(2): 212-220.
DING Wenlong, LI Chao, LI Chunyan, et al.Dominant factor of fracture development in shale and its relationship to gas accumulation[J]. Earth Science Frontiers, 2012, 19(2): 212-220.
[8] 赖生华, 刘文碧, 李德发, 等. 泥页岩裂缝油藏特征及控制裂缝发育的因素[J]. 矿物岩石, 1998, 18(2): 47-51.
LAI Shenghua, LIU Wenbi, LI Defa, et al.Characters of pelite-fractured reservoir and factors of controlling fractured development[J]. Journal of Mineral Petrology, 1998, 18(2): 47-51.
[9] 吴元燕, 吴胜和, 蔡正旗. 油矿地质学[M]. 北京: 石油工业出版社, 2005: 56-64.
WU Yuanyan, WU Shenghe, CAI Zhengqi.Oil field geology[M]. Beijing: Petroleum Industry Press, 2005: 56-64.
[10] HILL D G, LOMBARDI T E, MARTIN J P.Fractured shale gas potential in New York[J]. Northeastern Geology & Environment Science, 2004, 26(8): 1-49.
[11] NELSON R A.Geologic analysis of naturally fractured reservoirs: Contributions in petroleum geology and engineering[M]. Houston: Gulf Publishing Company, 1985: 320.
[12] 马新仿, 李宁, 尹丛彬, 等. 页岩水力裂缝扩展形态与声发射解释: 以四川盆地志留系龙马溪组页岩为例[J]. 石油勘探与开发, 2017, 44(6): 974-981.
MA Xinfang, LI Ning, YIN Congbin, et al.Hydraulic fracture propagation geometry and acoustic emission interpretation: A case study of Silurian Longmaxi Formation shale in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(6): 974-981.
[13] 端祥刚, 安为国, 胡志明, 等. 四川盆地志留系龙马溪组页岩裂缝应力敏感实验[J]. 天然气地球科学, 2017, 28(9): 1416-1424.
DUAN Xianggang, AN Weiguo, HU Zhiming, et al.Experimental study on fracture stress sensitivity of Silurian Longmaxi shale formation, Sichuan Basin[J]. Natural Gas Geoscience, 2017, 28(9): 1416-1424.
[14] 林永学, 高书阳, 曾义金. 基于层析成像技术的页岩微裂缝扩展规律研究[J]. 中国科学: 物理学?力学?天文学, 2017, 47(11): 114606-1-114606-7.
LIN Yongxue, GAO Shuyang, ZENG Yijin. Study of shale micro-fracture propagation based on tomographic technique[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2017, 47(11): 114606-1-114606-7.
[15] 王玉满, 王宏坤, 张晨晨, 等. 四川盆地南部深层五峰组—龙马溪组裂缝孔隙评价[J]. 石油勘探与开发, 2017, 44(4): 531-539.
WANG Yuman, WANG Hongkun, ZHANG Chenchen, et al.Fracture pore evaluation of the Upper Ordovician Wufeng to Lower Silurian Longmaxi Formations in southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(4): 531-539.
[16] 施振生, 董大忠, 邱振, 等. 渝东北巫溪2井龙马溪组黑色页岩特征及页岩气成藏条件[J]. 天然气工业, 2017, 37(S1): 17-24.
SHI Zhensheng, DONG Dazhong, QIU Zhen, et al.Analysis of black shale characteristics and accumulation conditions for Longmaxi Formation in Well WX2, Northeast Chongqing[J]. Natural Gas Industry, 2017, 37(S1): 17-24
[17] 施振生, 邱振, 董大忠, 等. 四川盆地东北缘龙马溪组含气页岩细粒沉积纹层特征: 以巫溪2井为例[J]. 石油勘探与开发, 2018, 45(2): 1-9.
SHI Zhensheng, QIU Zhen, DONG Dazhong, et al.Laminae characteristics of fine-grained deposits of gas-bearing shale of the Longmaxi Formation in northeast Sichuan Basin: A case study of Well Wuxi2[J]. Petroleum Exploration and Development, 2018, 45(2): 1-9.
[18] 刘合, 王素玲, 姜民政, 等. 基于数字散斑技术的非顺层缝扩展实验[J]. 石油勘探与开发, 2013, 40(4): 486-491.
LIU He, WANG Suling, JIANG Minzheng, et al.Experiments of vertical fracture propagation based on the digital speckle technology[J]. Petroleum Exploration and Development, 2013, 40(4): 486-491.
[19] 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36.
GUO Tonglou, ZHANG Hanrong.Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36.
[20] LAZAR O R, BOHACS K M, MACQUAKER J H S, et al. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines[J]. Journal of Sedimentary Research, 2015, 85(3): 230-246.
[21] 赵建华, 金之钧, 金振奎, 等. 四川盆地五峰组-龙马溪组含气页岩中石英成因研究[J]. 天然气地球科学, 2016, 27(2): 377-386.
ZHAO Jianhua, JIN Zhijun, JIN Zhenkui, et al.The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(2): 377-386.
[22] 刘江涛, 李永杰, 张元春, 等. 焦石坝五峰组-龙马溪组页岩硅质生物成因的证据及其地质意义[J]. 中国石油大学学报(自然科学版), 2017, 41(1): 34-41.
LIU Jiangtao, LI Yongjie, ZHANG Yuanchun, et al.Evidence of biogenic silica of Wufeng-Longmaxi Formation shale in Jiaoshiba area and its geological significance[J]. Journal of China University of Petroleum(Edition of Natural Science), 2017, 41(1): 34-41.
[23] JARVIE D M, HILL R J, POLLASTRO R M, et al.Evaluation of unconventional natural gas prospects: The Barnett shale fractured shale gas model[R]. Krakow, Poland: European Association of International Organic Geochemists, 2003.
[24] 龙鹏宇, 张金川, 唐玄, 等. 泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J]. 天然气地球科学, 2011, 22(3): 525-532.
LONG Pengyu, ZHANG Jinchuan, TANG Xuan, et al.Feature of muddy shale fissure and its effect for shale gas exploration and development[J]. Natural Gas Geoscience, 2011, 22(3): 525-532.
[25] ZHAO H F, CHEN H, LIU G H, et al.New insight into mechanisms of fracture network generation in shale gas reservoir[J]. Journal of Petroleum Science and Engineering, 2013, 110: 193-198.
[26] 王濡岳, 丁文龙, 龚大建, 等. 渝东南-黔北地区下寒武统牛蹄塘组页岩裂缝发育特征与主控因素[J]. 石油学报, 2016, 37(7): 832-845.
WANG Ruyue, DING Wenlong, GONG Dajian, et al.Development characteristics and major controlling factors of shale fractures in the Lower Cambrian Niutitang Formation, southeastern Chongqing- northern Guizhou area[J]. Acta Petrolei Sinica, 2016, 37(7): 832-845.
[27] HILL D G, LOMBARDI T E, MARTIN J P.Fractured shale gas potential in New York[J]. Northeastern Geology & Environment Science, 2004, 26(8): 1-49.
[28] CAMPBELL C V.Lamina, laminaset, bed and bedset[J]. Sedimentology, 1967, 8(1): 7-26.
[29] 郭彤楼. 涪陵页岩气田发现的启示与思考[J]. 地学前缘, 2016, 23(1): 29-43.
GUO Tonglou.Discovery and characteristics of the Fuling shale gas field and its enlightenment and thinking[J]. Earth Science Frontiers, 2016, 23(1): 29-43.
[30] 郭彤楼. 中国式页岩气关键地质问题与成藏富集主控因素[J]. 石油勘探与开发, 2016, 43(3): 317-326.
GUO Tonglou.Key geological issues and main controls on accumulation and enrichment of Chinese shale gas[J]. Petroleum Exploration and Development, 2016, 43(3): 317-326.
[31] 张善文, 张林晔, 张守春, 等. 东营凹陷古近系异常高压的形成与岩性油藏的含油性研究[J]. 科学通报, 2009, 54(11): 1570-1578.
ZHANG Shanwen, ZHANG Linye, ZHANG Shouchun, et al.Formation of abnormal high pressure and its application in the study of oil-bearing property of lithologic hydrocarbon reservoirs in the Dongying Sag[J]. Chinese Science Bulletin, 2009, 54(11): 1570-1578.
[32] 张士万, 孟志勇, 郭战峰, 等. 涪陵地区龙马溪组页岩储层特征及其发育主控因素[J]. 天然气工业, 2014, 34(12): 16-25.
ZHANG Shiwan, MENG Zhiyong, GUO Zhanfeng, et al.Characteristics and major controlling factors of shale reservoirs in the Longmaxi Formation, Fuling area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12): 16-25.
[33] 陈志鹏, 梁兴, 张介辉, 等. 昭通国家级示范区龙马溪组页岩气储层超压成因浅析[J]. 天然气地球科学, 2016, 27(3): 442-448.
CHEN Zhipeng, LIANG Xing, ZHANG Jiehui, et al.Genesis analysis of shale reservoir overpressure of Longmaxi Formation in Zhaotong Demonstration Area, Dianqianbei Depression[J]. Natural Gas Geoscience, 2016, 27(3): 442-448.
[34] 腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44(1): 69-78.
BORJIGIN Tenger, SHEN Baojian, YU Lingjie, et al.Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng- Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 69-78.
[35] 陈文玲, 周文, 罗平, 等. 四川盆地长芯1井下志留统龙马溪组页岩气储层特征研究[J]. 岩石学报, 2013, 29(3): 1073-1086.
CHEN Wenling, ZHOU Wen, LUO Ping, et al.Analysis of the shale gas reservoir in the Lower Silurian Longmaxi Formation, Changxin 1 well, Southeast Sichuan Basin, China[J]. Acta Petrologica Sinica, 2013, 29(3): 1073-1086.
[36] 李彦芳, 张兴金, 窦惠. 松辽盆地英台地区泥岩异常高压和泥岩裂缝的成因及对油气运移赋存的意义[J]. 石油勘探与开发, 1987, 14(3): 7-15.
LI Yanfang, ZHANG Xingjin, DOU Hui.The Genesis of the abnormal pressure and the fractured shales in Yingtai area in Songliao Basin and its significance in the migration and reservation of oil and gas[J]. Petroleum Exploration and Development, 1987, 14(3): 7-15.
[37] 张光亚, 陈全茂, 刘来民. 南阳凹陷泥岩裂缝油气藏特征及其形成机制探讨[J]. 石油勘探与开发, 1993, 20(1): 18-26.
ZHANG Guangya, CHEN Quanmao, LIU Laimin.A discussion on the characteristics of fractured reservoir of mudstone in Nanyang Depression and the mechanism of its formation[J]. Petroleum Exploration and Development, 1993, 20(1): 18-26.
文章导航

/