油气田开发

微观孔喉结构非均质性对剩余油分布形态的影响

  • 李俊键 ,
  • 刘洋 ,
  • 高亚军 ,
  • 成宝洋 ,
  • 孟凡乐 ,
  • 徐怀民
展开
  • 1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京102249;
    2. 中海油研究总院有限责任公司,北京 100028
李俊键(1983-),男,山东青州人,博士,中国石油大学(北京)油气田开发工程系副教授,主要从事油气田开发方面的科研工作。地址:北京市昌平区中国石油大学(北京)石油工程学院,邮政编码:102249。E-mail:junjian@126.com

收稿日期: 2018-03-30

  修回日期: 2018-07-05

  网络出版日期: 2018-08-03

基金资助

国家科技重大专项“致密油藏多尺度介质提高排驱效率数值模拟方法及优化设计研究”(2017ZX05009-005); 国家自然科学基金“多段压裂水平井示踪剂单井吞吐运移机理及缝网识别方法”(51674271)

Effects of microscopic pore structure heterogeneity on the distribution and morphology of remaining oil

  • LI Junjian ,
  • LIU Yang ,
  • GAO Yajun ,
  • CHENG Baoyang ,
  • MENG Fanle ,
  • XU Huaimin
Expand
  • 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China;
    2. CNOOC Research Institute Co. Ltd., Beijing 100028, China

Received date: 2018-03-30

  Revised date: 2018-07-05

  Online published: 2018-08-03

摘要

选取塔里木盆地东河砂岩储集层4块不同孔隙结构类型的岩心开展水驱油扫描成像实验,通过图像处理对油、水、颗粒三相进行精准分离,并建立孔隙网络模型,计算孔喉数目、喉道半径分布等参数,实现定量表征微观孔喉结构非均质性、驱替过程中油相的运移规律、驱替结束后剩余油的分布与形态规律等。研究结果表明:宏观孔隙度-渗透率相同的岩心,其微观孔喉结构非均质性仍存在较大差异;宏观孔隙度-渗透率、微观孔喉结构非均质性均不同程度影响油相的运移与剩余油的分布形态,非均质性越强,水相主要沿优势通道渗流,剩余油成片状滞留在小孔隙内,驱替过程中形成的油簇(滴)的数量越多,平均体积越小,剩余油以簇状连续相为主且饱和度较高;非均质性越弱,孔喉波及效率越高,剩余油主要以非连续相滞留在孔隙内。微观剩余油分布形态与绝对渗透率、毛细管数、微观非均质性有关,由此建立的微观剩余油分布连续性识别图版,可以很好地描述三者与剩余油分布的关系并准确识别剩余油分布的连续性。图16表4参27

本文引用格式

李俊键 , 刘洋 , 高亚军 , 成宝洋 , 孟凡乐 , 徐怀民 . 微观孔喉结构非均质性对剩余油分布形态的影响[J]. 石油勘探与开发, 2018 , 45(6) : 1043 -1052 . DOI: 10.11698/PED.2018.06.12

Abstract

Waterflooding experiments were performed using Micro-CT on four cores of different pore structures from Donghe sandstone reservoirs in the Tarim Basin. The water, oil and grains were accurately separated by the advanced image processing technology, the pore network model was established, and parameters such as the number of throats and the throat size distribution were calculated to characterize the microscopic heterogeneity of pore structure, the flow of oil phase during displacement, and the morphology and distribution of remaining oil after displacement. The cores with the same macroscopic porosity-permeability have great differences in microscopic heterogeneity of pore structure. Both macro porosity-permeability and micro heterogeneity of pore structure have an influence on the migration of oil phase and the morphology and distribution of remaining oil. When the heterogeneity is strong, the water phase will preferentially flow through the dominant paths and the remaining oil clusters will be formed in the small pores. The more the number of oil clusters (droplets) formed during displacement process, the smaller the average volume of cluster is, and the remaining oil is dominated by the cluster continuous phase with high saturation. The weaker the heterogeneity, the higher the pore sweep efficiency is, and the remaining oil clusters are mainly trapped in the form of non-continuous phase. The distribution and morphology of micro remaining oil are related to the absolute permeability, capillary number and micro-heterogeneity. So, the identification plate of microscopic residual oil continuity distribution established on this basis can describe the relationship between these three factors and distribution of remaining oil and identify the continuity of the remaining oil distribution accurately.

参考文献

[1] 武楗棠, 张政威, 姜淑霞, 等. 微观非均质性对微观规模剩余油分布的影响[J]. 断块油气田, 2005, 12(3): 10-12.
WU Jiantang, ZHANG Zhengwei, JIANG Shuxia, et al.Micro anisotropies influences distribution of micro scale residual oil[J]. Fault-Block Oil & Gas Field, 2005, 12(3): 10-12.
[2] 何辉, 宋新民, 蒋有伟, 等. 砂砾岩储层非均质性及其对剩余油分布的影响: 以克拉玛依油田二中西区八道湾组为例[J]. 岩性油气藏, 2012, 24(2): 117-123.
HE Hui, SONG Xinmin, JIANG Youwei, et al.Heterogeneity of sandy conglomerate reservoir and its influence on remaining oil distribution: A case study from Badaowan Formation in the mid-west of block Ⅱ in Karamay Oilfield[J]. Lithologic Reservoirs, 2012, 24(2): 117-123.
[3] 于春磊, 糜利栋, 王川, 等. 水驱油藏特高含水期微观剩余油渗流特征研究[J]. 断块油气田, 2016, 23(5): 592-594.
YU Chunlei, MI Lidong, WANG Chuan, et al.Percolation characteristics investigation of microscopic remaining oil in water flooding reservoir with ultra-high water cut[J]. Fault-Block Oil & Gas Field, 2016, 23(5): 592-594.
[4] 董利飞, 岳湘安, 苏群, 等. 非均质储层水驱剩余油分布及其挖潜室内模拟研究[J]. 石油钻采工艺, 2015, 37(6): 63-66.
DONG Lifei, YUE Xiang’an, SU Qun, et al.Distribution of remaining oil by water flooding in heterogeneous reservoirs and indoor simulation study for its potential tapping[J]. Oil Drilling & Production Technology, 2015, 37(6): 63-66.
[5] 孙廷彬, 林承焰, 崔仕提, 等. 海相碎屑岩储层微观非均质性特征及其对高含水期剩余油分布的影响[J]. 中南大学学报(自然科学版), 2013(8): 3282-3292.
SUN Tingbin, LIN Chengyan, CUI Shiti, et al.Microscopic heterogeneity characteristics of marine clastic reservoirs and effect to remaining oil distribution in high water cut stage[J].Journal of Central South University (Science and Technology), 2013(8): 3282-3292.
[6] 胡钦红, 张宇翔, 孟祥豪, 等. 渤海湾盆地东营凹陷古近系沙河街组页岩油储集层微米—纳米级孔隙体系表征[J]. 石油勘探与开发, 2017, 44(5): 681-690.
HU Qinhong, ZHANG Yuxiang, MENG Xianghao, et al.Characterization of micro-nano pore networks in shale oil reservoirs of Paleogene Shahejie Formation in Dongying Sag of Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2017, 44(5): 681-690.
[7] 高亚军, 姜汉桥, 王硕亮, 等. 基于Level set方法的微观水驱油模拟分析[J]. 中国海上油气, 2016, 28(6): 59-65.
GAO Yajun, JIANG Hanqiao, WANG Shuoliang, et al.Simulation analysis of microscopic water-oil displacement based on Level set method[J]. China Offshore Oil and Gas, 2016, 28(6): 59-65.
[8] 佘敏, 寿建峰, 沈安江, 等. 碳酸盐岩溶蚀规律与孔隙演化实验研究[J]. 石油勘探与开发, 2016, 43(4): 564-572.
SHE Min, SHOU Jianfeng, SHEN Anjiang, et al.Experimental simulation of dissolution law and porosity evolution of carbonate rock[J]. Petroleum Exploration and Development, 2016, 43(4): 564-572.
[9] 谷潇雨, 蒲春生, 黄海, 等. 渗透率对致密砂岩储集层渗吸采油的微观影响机制[J]. 石油勘探与开发, 2017, 44(6): 948-954.
GU Xiaoyu, PU Chunsheng, HUANG Hai, et al.Micro-influencing mechanism of permeability on spontaneous imbibition recovery for tight sandstone reservoirs[J]. Petroleum Exploration and Development, 2017, 44(6): 948-954.
[10] 程志林, 隋微波, 宁正福, 等. 数字岩心微观结构特征及其对岩石力学性能的影响研究[J].岩石力学与工程学报, 2018(2): 449-460.
CHENG Zhilin, SUI Weibo, NING Zhengfu, et al.Microstructure characteristics and its effects on mechanical properties of digital core[J]. Chinese Journal of Rock Mechanics and Engineering, 2018(2): 449-460.
[11] 孙亮, 王晓琦, 金旭, 等. 微纳米孔隙空间三维表征与连通性定量分析[J]. 石油勘探与开发, 2016, 43(3): 490-498.
SUN Liang, WANG Xiaoqi, JIN Xu, et al.Three-dimensional characterization and quantitative connectivity analysis of micro/nano pore space[J]. Petroleum Exploration and Development, 2016, 43(3): 490-498.
[12] 卢双舫, 李俊乾, 张鹏飞, 等. 页岩油储集层微观孔喉分类与分级评价[J]. 石油勘探与开发, 2018, 45(3): 436-444.
LU Shuangfang, LI Junqian, ZHANG Pengfei, et al.Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs[J]. Petroleum Exploration and Development, 2018, 45(3): 436-444.
[13] 刘广为, 周代余, 姜汉桥, 等. 塔里木盆地海相砂岩油藏水平井水淹规律及其模式[J]. 石油勘探与开发, 2018, 45(1): 128-135.
LIU Guangwei, ZHOU Daiyu, JIANG Hanqiao, et al.Water-out performance and pattern of horizontal wells for marine sandstone reservoirs in Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1): 128-135.
[14] 刘强, 余义常, 江同文, 等. 哈得逊油田东河砂岩储层水淹变化机理研究[J]. 岩性油气藏, 2017, 29(2): 150-159.
LIU Qiang, YU Yichang, JIANG Tongwen, et al.The mechanism of reservoir transition through waterflooding of Donghe sandstone in Hadeson Oilfield[J]. Lithologic Reservoirs, 2017, 29(2): 150-159.
[15] LAI J, WANG G, WANG Z, et al.A review on pore structure characterization in tight sandstones[J]. Earth-Science Reviews, 2018, 177: 436-457.
[16] 李俊键, 高亚军, 赵玉云, 等. 一种用于CT扫描的岩心夹持器: CN106706684A[P].2017-05-24.
LI Junjian, GAO Yajun, ZHAO Yuyun, et al. One kind of core holder for CT scanning: CN106706684A[P].2017-05-24.
[17] IGLAUER S, LEBEDEV M.High pressure-elevated temperature x-ray micro-computed tomography for subsurface applications[J]. Advances in Colloid & Interface Science, 2018, 256: 393-410.
[18] BUADES A, COLL B, MOREL J M.A non-local algorithm for image denoising[J]. IEEE Computer Society Conference on Computer Vision & Pattern Recognition, 2005, 2(7): 60-65.
[19] KHISHVAND M, AKARABADI M, PIRI M.Micro-scale experimental investigation of the effect of flow rate on trapping in sandstone and carbonate rock samples[J]. Advances in Water Resources, 2016, 94: 379-399.
[20] BLUNT M J.Multiphase flow in permeable media: A pore-scale perspective[M]. Cambridge, United Kingdom: Cambridge University Press, 2017.
[21] VOGEL H J, ROTH K.Quantitative morphology and network representation of soil pore structure[J]. Advances in Water Resources, 2001, 24(3): 233-242.
[22] PEREZ G, CHOPRA A K.Evaluation of fractal models to describe reservoir heterogeneity and performance[R].SPE 452260, 1997.
[23] KROHN C E.Fractal measurements of sandstones, shales, and carbonates[J]. Journal of Geophysical Research Soild Earth, 1988, 93(B4): 3297-3305.
[24] 刘航宇, 田中元, 徐振永. 基于分形特征的碳酸盐岩储层孔隙结构定量评价[J]. 岩性油气藏, 2017, 29(5): 97-105.
LIU Hangyu, TIAN Zhongyuan, XU Zhenyong.Quantitative evaluation of carbonate reservoir pore structure based on fractal characteristic[J]. Lithologic Reservoirs, 2017, 29(5): 97-105.
[25] 侯健, 邱茂鑫, 陆努, 等. 采用CT技术研究岩心剩余油微观赋存状态[J]. 石油学报, 2014, 35(2): 319-325.
HOU Jian, QIU Maoxin, LU Nu, et al.Characterization of residual oil microdistribution at pore scale using computerized tomography[J]. Acta Petrolei Sinica, 2014, 35(2): 319-325.
[26] LI J, JIANG H, WANG C, et al.Pore-scale investigation of microscopic remaining oil variation characteristics in water-wet sandstone using CT scanning[J]. Journal of Natural Gas Science & Engineering, 2017, 48: 36-35.
[27] LI J, GAO Y, JIANG H, et al. Pore-scale imaging of the oil cluster dynamic during drainage and imbibition using in situ X-ray microtomography[EB/OL].(2018-04-24)[2018-06-23]. https://doi.org/10.1155/2018/7679607.
文章导航

/