[1] 吴奇, 胥云, 王腾飞, 等. 增产改造理念的重大变革: 体积改造技术概论[J]. 天然气工业, 2011, 31(4):7-12.
WU Qi, XU Yun, WANG Tengfei, et al.The resolution of reservoir stimulation: An introduction of volume stimulation[J]. Natural Gas Industry, 2011, 31(4): 7-12.
[2] 吴奇, 胥云, 王晓泉, 等. 非常规储集层体积改造技术: 内涵、优化设计与实现[J]. 石油勘探与开发, 2012, 39(3): 352-358.
WU Qi, XU Yun, WANG Xiaoquan, et al.Volume stimulation technology of unconventional reservoirs: Connotation, optimization design and implementation[J]. Petroleum Exploration and Development, 2012, 39(3): 352-358.
[3] 吴奇, 胥云, 张守良, 等. 非常规储集层体积改造技术核心理论与优化设计关键[J]. 石油学报, 2014, 35(4): 706-714.
WU Qi, XU Yun, ZHANG Shouliang, et al.The core theories and key optimization designs of volume stimulation technology for unconventional reservoirs[J]. Acta Petrolei Sinica, 2014, 35(4): 706-714.
[4] MAXWELL S C, URBANCICT I, STEINSBERGER N, et al.Microseismic imaging of hydraulic fracture complexity in the Barnett shale[R]. SPE 77440, 2002.
[5] MAYERHOFER M J, LOLON E P, YOUNGBLOOD J E, et al.Integration of microseismic fracture mapping results with numerical fracture network production modeling in the Barnett shale[R]. SPE 102103, 2006.
[6] MAYERHOFER M J, LOLON E P, WARPINSKIN R, et al.What is stimulated reservoir volume?[R]. SPE 119890, 2010.
[7] 雷群, 胥云, 蒋廷学, 等. 用于提高低-特低渗透油气藏改造效果的缝网压裂技术[J]. 石油学报, 2009, 30(2): 237-241.
LEI Qun, XU Yun, JIANG Tingxue, et al.Fracture network stimulation technique for improving post-stimulation performance of low and ultra-low permeability reservoirs[J]. Acta Petrolei Sinica, 2009, 30(2): 237-241.
[8] KARNIADAKIS G E, BESKOK A.Microflows and nanoflows: Fundamentals and simulation[M]. Berlin: Springer, 2005.
[9] 朱维耀, 亓倩. 页岩气多尺度复杂流动机理与模型研究[J]. 中国科学: 技术科学, 2016, 46(2): 111-119.
ZHU Weiyao, QI Qian.Study on the multi-scale nonlinear flow mechanism and model of shale gas[J]. SCIENTIA SINICA Technologica, 2016, 46(2): 111-119.
[10] 朱维耀, 岳明, 高英, 等. 致密油层体积压裂非线性渗流模型及产能分析[J]. 中国矿业大学学报, 2014, 43(2): 248-254.
ZHU Weiyao, YUE Ming, GAO Ying, et al.Nonlinear flow model and productivity of stimulated reservoir volume in tight oil reservoirs[J]. Journal of China University of Minning & Technology, 2014, 43(2): 248-254.
[11] ALCOSER L A, OVALLE A, PARSONS M.The Bakken: Utilizing a petroleum system based analysis to optimally exploit one of the world[R]. SPE 158918, 2012.
[12] PEARSON M, GRIFFIN L, WEIJERS L.Breaking up is hard to do: Creating hydraulic fracture complexity in the Bakken central basin[R]. SPE 163827, 2013.
[13] ROMANSON R, PONGRATZ R, EAST L, et al.Multistage stimulation processes can help achieve and control branch stimulation and increase stimulated reservoir volume for unconventional reservoirs[R]. SPE 142959, 2011.
[14] 修乃岭, 严玉忠, 窦晶晶, 等. 四川长宁A平台页岩气水平井组压裂地面测斜仪监测评估[J]. 石油地质与工程, 2016, 30(5): 124-126.
XIU Nailing, YAN Yuzhong, DOU Jingjing, et al.Fracture monitoring by surface tiltmeter in horizontal-well A pad in Changning, Sichuan[J]. Petroleum Geology and Engineering, 2016, 30(5): 124-126.
[15] CIPOLLA C, WALLACE J.Stimulated reservoir volume: A misapplied concept?[R]. SPE 168596, 2014.
[16] SHELLEY R, SHAH K, UNDERWOOD K, et al.Utica well performance evaluation: A multiwell pad case history[R]. SPE 181400, 2016.
[17] JOSEPH Y, THOMAS D, CRISS V, et al.Influencing fracture growth with stage sequencing[R]. SPE 184057, 2016.
[18] THEERAPAT S, AZRA N T.Evaluation of multistage hydraulic fracture patterns in naturally fractured tight oil formations utilizing a coupled geomechanics-fluid flow model: Case study for an Eagle Ford shale well pad[C]//50th U.S. Rock Mechanics/Geomechanics Symposium. Houston, Texas: American Rock Mechanics Association, 2016.
[19] AGHARAZI A.Determining maximum horizontal stress with microseismic focal mechanisms: Case studies in the Marcellus, Eagle Ford, Wolfcamp[R]. URTEC 2461621, 2016.
[20] BAZAN L W, LARKIN S D, LATTIBEUDIERE M G, et al.Improving production in the Eagle Ford shale with fracture modeling, increased fracture conductivity, and optimized stage and cluster spacing along the horizontal wellbore[R]. SPE 138425, 2010.
[21] ZHU J, FORREST J, XIONG H J, et al.Cluster spacing and well spacing optimization using multi-well simulation for the lower Spraberry shale in Midland basin[R]. SPE 187485, 2017.
[22] FARHAN A, RAJ M, ROHANN J, et al.Stacked pay pad development in the Midland Basin[R]. SPE 187496, 2017.
[23] Carrizo Oil & Gas, Inc. Wells Fargo2015 Energy Symposium [EB/OL]. (2015-12-08)[2018-03-09]. https://s22.q4cdn.com/193387661/ files/doc_presentations/12- 8-15_Wells_Fargo_conference.pdf.
[24] Halliburton. Halliburton teams up with eclipse resources to complete longest lateral well in the U.S.[EB/OL]. (2016-03-31)[2018-03-09]. http://www.halliburton.com/public/news/pubsdata/press_release/2016/ halliburton-teams-up-to-complete-longest-lateral-well-in-us.html.
[25] BUNGER A P.Analysis of the power input needed to propagate multiple hydraulic fractures[J]. International Journal of Solids & Structures, 2013, 50(10): 1538-1549.
[26] DETOURNAY E.Propagation regimes of fluid-driven fractures in impermeable rocks[J]. International Journal of Geomechanics, 2004, 4(1): 35-45.
[27] LECAMPION B, DESROCHES J, WENG X, et al.Can we engineer better multistage horizontal completions? Evidence of the importance of near-wellbore fracture geometry from theory, lab and field experiments[R]. SPE 173363, 2015.
[28] WU K, OLSON J E.Mechanisms of simultaneous hydraulic-fracture propagation from multiple perforation clusters in horizontal wells[R]. SPE 178925, 2015.
[29] SOMANCHI K, BREWER J, REYNOLDS A.Extreme limited entry design improves distribution efficiency in plug-n-perf completions: Insights from fiber-optic diagnostics[R]. SPE 184834, 2017.
[30] WEDDLE P, GRIGGIN L, PEARSON C M.Mining the Bakken II: Pushing the envelope with extreme limited entry perforating[R]. SPE 189880, 2018.
[31] CIPOLLA C L, WARPINSKI N R, MAYHOFER M J.Hydraulic fracture complexity: Diagnosis, remediation, and exploration[R]. SPE 115771, 2008.
[32] ABASS H H, MEADOWS D L, BRUMLEY J L, et al.Oriented perforation: A rock mechanics view[R]. SPE 28555, 1994.
[33] CUTHILL D, YANG W B, HARDESTY J.Improved hydraulic stimulation perforation efficiency observed with constant entry hole and constant penetration perforating system[R]. SPE 184878, 2017.
[34] RABAA W E.Experimental study of hydraulic fracture geometry initiated from horizontal wells[R]. SPE 19720, 1989.
[35] BEUGELSDIJK L J L, PATER C J, SATO K. Experimental hydraulic fracture propagation in a multi-fractured medium[R]. SPE 59419, 2000.
[36] 付海峰, 刘云志, 梁天成, 等. 四川省宜宾地区龙马溪组页岩水力裂缝形态实验研究[J]. 天然气地球科学, 2016, 27(12): 2231-2236.
FU Haifeng, LIU Yunzhi, LIANG Tiancheng, et al.Laboratory study on hydraulic fracture geometry of Longmaxi Formation shale in Yibin area of Sichuan Province[J]. Natural Gas Geoscience, 2016, 27(12): 2231-2236.
[37] LECAMPION B, ABBAS S, PRIOUL R.Competition between transverse and axil hydraulic fractures of horizontal wells[R]. SPE 163848, 2013.
[38] WU K, OLSON J E.Numerical investigation of complex hydraulic fracture development in naturally fractured reservoirs[R]. SPE 173326, 2015.
[39] 胥云, 陈铭, 吴奇, 等. 水平井体积改造应力干扰计算模型及其应用[J]. 石油勘探与开发, 2016, 43(5): 780-786.
XU Yun, CHEN Ming, WU Qi, et al.Stress interference calculation model and its application in volume stimulation of horizontal wells[J]. Petroleum Exploration and Development, 2016, 43(5): 780-786.
[40] VALK P, ECONOMIDES M J.Hydraulic fracture mechanics[M]. New York: John Wiley & Sons, 1995.
[41] DARIN S R, HUITT J L.Effect of a partial monolayer of propping agent on fracture flow capacity[R]. SPE 1291, 1960.
[42] ELY J W, FOWLER S L, TINER R L, et al.“Slick water fracturing and small proppant” The future of stimulation or a slippery slope?[R]. SPE 170784, 2014.
[43] DAHL J, NGUYEN P, DUSTERHOFT R, et al.Application of micro-proppant to enhance well production in unconventional reservoirs: Laboratory and field results[R]. SPE 174060, 2015.
[44] CALVIN J, GRIESER B.Enhancement of well production in the SCOOP Woodford shale through the application of microproppant[R]. SPE 184863, 2017.
[45] ADACHI J, SIEBRITS E, PEIRCE A, et al.Computer simulation of hydraulic fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 739-757.
[46] SETTARI A, CLEARY M P.Three-dimensional simulation of hydraulic fracturing[J]. Journal of Petroleum Technology, 1982, 36(7): 1177-1190.
[47] PALMER I D, CARROLL H B.Numerical solution for height and elongated hydraulic fractures[R]. SPE 11627, 1983.
[48] LEE T S, ADVANI S H, LEE J K.Three-dimensional modeling of hydraulic fractures in layered media: Part I: Finite element formulations[J]. Journal of Energy Resources Technology, 1990, 112(1): 1-9.
[49] CARTER B J, DESROCHES J, INGRAFFEA A R, et al.Simulating fully 3D hydraulic fracturing[M]. New York: John Wiley & Sons, 2000: 525-557.
[50] HOSSAIN M M, RAHMAN M K, RAHMAN S S, et al.Volumetric growth and hydraulic conductivity of naturally fractured reservoirs during hydraulic stimulation: A case study using Australian conditions[R]. SPE 63173, 2000.
[51] ROBERT W, ROSALIND A, BILL D.Integration of seismic anisotropy and reservoir performance data for characterization of naturally fractured reservoirs using discrete feature network models[R]. SPE 84412, 2005.
[52] OLSON J E.Multi-fracture propagation modeling: Applications to hydraulic fracturing in shales and tight gas sands[C]//The 42nd U.S. Rock Mechanics Symposium (USRMS). San Francisco: American Rock Mechanics Association, 2008.
[53] WU K, OLSON J E.Simultaneous multifracture treatments: Fully coupled fluid flow and fracture mechanics for horizontal wells[R]. SPE 167626, 2015.
[54] DAHI-TALEGHANI A, OLSON J E.Analysis of multistranded hydraulic fracture propagation: An improved model for the interaction between induced and natural fractures[R]. SPE 124884, 2009.
[55] DAHI-TALEGHANI A, OLSON J E.Numerical modeling of multi- stranded hydraulic fracture propagation: Accounting for the interaction between induced and natural fractures[J]. SPE Journal, 2011, 16(3): 575-581.
[56] MEYER B R, BAZAN L W.A discrete fracture network model for hydraulically induced fractures: Theory, parametric and case studies[R]. SPE 140514, 2011.
[57] MAXWELL S C, POPE T, CIPOLLA C, et al.Understanding hydraulic fracture variability through integrating microseismicity and seismic reservoir characterization[R]. SPE 144207, 2011.
[58] KRESSE O, COHEN C, WENG X, et al.Numerical modeling of hydraulic fracturing in naturally fractured formations[J]. U.S. Rock Mechanics, 2011, 15(5): 516-535.
[59] GU H, WENG X W.Criterion for fracture crossing frictional interfaces at non-orthogonal angles[R]. Salt Lake City, Utah: 44th U.S. Rock Mechanics Symposium and 5th U.S.-Canada Rock Mechanics Symposium, 2010.
[60] CHUPRAKOV D, MELCHAEVA O, PRIOUL R.Injection-sensitive mechanics of hydraulic fracture interaction with discontinuities[J]. Rock Mechanics & Rock Engineering, 2014, 47(5): 1625-1640.
[61] COHEN C, KRESSE O, WENG X W.Stacked height model to improve fracture height growth prediction, and simulate interactions with multi-layer DFNs and ledges at weak zone interfaces[R]. SPE 184876, 2017.
[62] XU G S, WONG S W.Interaction of multiple non-planar hydraulic fractures in horizontal wells[R]. IPTC 17043, 2013.
[63] LONG G, XU G S.The effects of perforation erosion on practical hydraulic-stimulation applications[R]. SPE 185173, 2017.
[64] NASSIR M, SETTARI A.Prediction of SRV and optimization in tight gas and shale using a fully elasto-platic coupled geomechanical model[R]. SPE 163814, 2013.
[65] PROFIT M L, DUTKO M, YU J.Developing a framework to simulate the hydraulic stimulation of tight gas reservoirs based on integrative adaptive remeshing and combined finite/discrete element approach[C]//49th U.S. Rock Mechanics/Geomechanics Symposium. San Francisco: ARMA, 2015.
[66] ALFATAIERGE A.3D modeling and characterization of hydraulic fracture efficiency integrated with 4D/9C timelapse seismic interpretations in the Niobrara formation, Wattenberg field, Denver basin[D]. Colorado, USA : Colorado School of Mines, 2017.
[67] ALFATAIERGE A, MISKIMINS J L, DAVIS T L, et al.3D hydraulic fracture simulation integrated with 4D time-lapse multicomponent seismic and microseismic interpretation, Wattenberg field, Colorado[R]. SPE 189889, 2018.
[68] 陈勉. 页岩气储层水力裂缝转向扩展机制[J]. 中国石油大学学报(自然科学版), 2013, 37(5): 88-94.
CHEN Mian.Re-orientation and propagation of hydraulic fractures in shale gas reservoir[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(5): 88-94.
[69] 曾庆磊, 庄茁, 柳占立, 等. 页岩水力压裂中多簇裂缝扩展的全耦合模拟[J]. 计算力学学报, 2016, 33(4): 643-648.
ZENG Qinglei, ZHUANG Zhuo, LIU Zhanli, et al.Fully coupled modeling for multiple clusters growth of hydraulic fractures in shale[J]. Chinese Journal of Computational Mechanics, 2016, 33(4): 643-648.
[70] 王理想, 唐德泓, 李世海, 等. 基于混合方法的二维水力压裂数值模拟[J]. 力学学报, 2015, 47(6): 973-983.
WANG Lixiang, TANG Dehong, LI Shihai, et al.Numerical simulation of hydraulic stimulation by a mixed method in two dimensions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6) : 973-983.
[71] GUO J C, ZHAO X, ZHU H Y, et al.Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method[J]. Journal of Natural Gas Science & Engineering, 2015, 25: 180-188.
[72] ZOU Y S, MA X F, ZHANG S C, et al.Numerical Investigation into the influence of bedding plane on hydraulic fracture network propagation in shale formations[J]. Rock Mechanics & Rock Engineering, 2016, 49(9): 3597-3614.
[73] 陈铭, 胥云, 翁定为. 水平井多段压裂多裂缝扩展形态计算方法[J]. 岩石力学与工程学报, 2016(S2): 3906-3914.
CHEN Ming, XU Yun, WENG Dingwei.Calculation method for multi-fracture propagation geometry of multi-stage stimulation in horizontal wells[J]. Chinese Journal of Rock Mechanics & Engineering, 2016(S2): 3906-3914.
[74] 陈铭, 胥云, 吴奇, 等. 水平井体积改造多裂缝扩展形态算法: 不同布缝模式的研究[J]. 天然气工业, 2016, 36(8): 79-87.
CHEN Ming, XU Yun, WU Qi, et al.Algorithm for multi-fracture propagation morphology in horizontal well volume stimulation: Investigation on different fracture distribution patterns[J]. Natural Gas Industry, 2016, 36(8): 79-87.
[75] 赵金洲, 陈曦宇, 李勇明, 等. 水平井分段多簇压裂模拟分析及射孔优化[J]. 石油勘探与开发, 2017, 44(1): 117-124.
ZHAO Jinzhou, CHEN Xiyu, LI Yongming, et al.Numerical simulation of multi-stage stimulation and optimization of perforation in a horizontal well[J]. Petroleum Exploration & Development, 2017, 44(1): 117-124.
[76] 吴奇, 梁兴, 鲜成钢, 等. 地质-工程一体化高效开发中国南方海相页岩气[J]. 中国石油勘探, 2015, 20(4): 1-23.
WU Qi, LIANG Xing, XIAN Chenggang, et al.Geoscience-to- production integration ensures effective and efficient South China marine shale gas development[J]. China Petroleum Exploration, 2015, 20(4): 1-23.
[77] MODELAND N, BULLER D, CHONG K K.Statistical analysis of the effect of completion methodology on production in the Haynesville shale[R]. SPE 144120, 2011.
[78] Pioneer Natural Resources Company. Pioneer Natural Resources Q32016 earnings[EB/OL]. (2016-11-02)[2018-03-09]. https://wowza. earningscast.com/events/765ab27c4f3ee1c58398017c83295cc3/materials/ 15319/secured_download/eb88f8bc64a987bc49c886acf00721dd346fcb53.
[79] GU H R, SIEBRITS E, SABOUROV A.Hydraulic fracture modeling with bedding plane interfacial slip[R]. SPE 117445, 2008.
[80] CHRUPRAKOV D, PRIOUL R.Hydraulic fracture height containment by weak horizontal interfaces[R]. SPE 173337, 2016.
[81] Energen Corporation. Energen’s Gen 3 wells continue to deliver outstanding results[EB/OL]. (2017-11-08)[2018-03-09]. http://ir.energen. com/phoenix.zhtml?c= 94826&p=irol-newsArticle&ID=2315268.
[82] RAMURTHY M, BARREE R D, KUNDERT D P, et al.Surface-area vs. conductivity-type fracture treatments in shale reservoirs[J]. SPE Production & Operations, 2011, 26(4): 357-367.
[83] SHARMA M M, MANCHANDA R.The role of induced un-propped (IU) fractures in unconventional oil and gas wells[R]. SPE 174946, 2015.
[84] WENG X W, SESETTY V, KRESSE O.Investigation of shear- induced permeability in unconventional reservoirs[C]//49th U.S. Rock Mechanics/Geomechanics Symposium. San Francisco: ARMA, 2015.
[85] WU W W, KAKKAR P, ZHOU J H, et al.An experimental investigation of the conductivity of unpropped fractures in shales[R]. SPE 184858, 2017.
[86] WANG H Y, SHARMA M M.Estimating unpropped fracture conductivity and compliance from diagnostic fracture injection tests[R]. SPE 189844, 2018.
[87] SIERRA L, MAYERHOFER M.Induced fracture complexity, when is it really required in unconventional reservoir stimulation?[R]. SPE 168976, 2014.
[88] CIPOLLA C L, WARPINSKI N R, MAYERHOFER M J, et al.The relationship between fracture complexity, reservoir properties, and fracture treatment design[J]. SPE Production & Operations, 2010, 25(4): 438-452.
[89] MAYER B R, JACOT R H.Pseudosteady-state analysis of finite- conductivity vertical fractures[R]. SPE 95941, 2005.
[90] GU M, KULKAMI P, PAFIEE M, et al.Optimum fracture conductivity for naturally fractured shale and tight reservoirs[R]. SPE 171648, 2016.
[91] CINCO-LEY H, SAMANIEGO-V F.Transient pressure analysis for fractured wells[R]. SPE 7490, 1981.
[92] MILLER G, LINDSAY G, BAIHLY J, et al.Parent well restimulation: Economic safety nets in an uneconomic market[R]. SPE 180200, 2016.
[93] LINDSAY G, MILLER G, XU T, et al.Production performance of infill horizontal wells vs. pre-existing wells in the major US unconventional basins[R]. SPE 189875, 2018.
[94] GAKHAR K, SHAN D, RODIONOV Y, et al.Engineered approach for multi-well pad development in Eagle Ford Shale[R]. SPE 2431182, 2016.
[95] BERCHENKO I, DETOURNAY E.Deviation of hydraulic fractures through poroelastic stress changes induced by fluid injection and pumping[J]. International Journal of Rock Mechanics & Mining Sciences, 1997, 34(6): 1009-1019.
[96] ROUSSEL N P.Stress reorientation in low permeability reservoirs[D]. Austin, Texas: University of Texas at Austin, 2012.
[97] COURTIER J, GRAY D, SMITH M, et al.Legacy well protection refrac mitigates offset well completion communications in joint industry project[R]. SPE 181767, 2016.
[98] Enventure. Enventure global technology and vorpal energy solutions announce a strategic collaboration focused on the refract market[EB/OL]. (2015-08-31)[2018-03-09].http://www.enventuregt.com/en/news-resources/news/enventure-global-technology-and-vorpal-energy-solutions-announce-strategic.