石油工程

体积改造技术理论研究进展与发展方向

  • 胥云 ,
  • 雷群 ,
  • 陈铭 ,
  • 吴奇 ,
  • 杨能宇 ,
  • 翁定为 ,
  • 李德旗 ,
  • 蒋豪
展开
  • 1. 中国石油勘探开发研究院,北京 100083;
    2. 中国石油油气藏改造重点实验室,河北廊坊 065007;
    3. 中国石油大学(北京),北京 102249;
    4. 中国石油勘探与生产分公司,北京 100007;
    5. 中国石油浙江油田公司,杭州 310023
胥云(1961-),男,重庆市人,博士,中国石油勘探开发研究院教授级高级工程师,主要从事油气藏压裂酸化基础理论、技术方法与现场应用等研究工作。地址:河北省廊坊市万庄石油分院,邮政编码:065007。E-mail: xuyun69@petrochina.com.cn

收稿日期: 2018-03-09

  网络出版日期: 2018-07-18

基金资助

国家科技重大专项“储集层改造关键技术及装备”(2016ZX05023)

Progress and development of volume stimulation techniques

  • XU Yun ,
  • LEI Qun ,
  • CHEN Ming ,
  • WU Qi ,
  • YANG Nengyu ,
  • WENG Dingwei ,
  • LI Deqi ,
  • JIANG Hao
Expand
  • 1. Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China;
    2. The Key Laboratory of Reservoir Stimulation, PetroChina, Langfang 065007, China;
    3. China University of Petroleum, Beijing 102249, China;
    4. PetroChina Exploration and Production Company, Beijing 100007, China;
    5. PetroChina Zhejiang Oilfield Company, Hangzhou 310023, China

Received date: 2018-03-09

  Online published: 2018-07-18

摘要

基于水平井体积改造理论研究和10年现场应用情况,进一步诠释体积改造的核心内涵,分析体积改造的实现方法、设计模型与关键问题,提出了未来发展方向。研究表明:分簇限流技术能实现多簇均衡扩展,应用“冻胶破岩+滑溜水携砂”复合压裂模式及小粒径支撑剂可降低近井裂缝复杂度,提高远井改造体积;剪切自支撑裂缝与滑溜水输砂能够满足非常规储集层对导流的需求,子井与母井的最优井距应根据压裂模式、规模和压降范围确定,重构渗流场、应力场和改造对象是提高水平井重复压裂效果的关键。缩小井距与簇间距的密切割技术是未来建立“缝控”可采储量开发模式的基础,结合立体式体积改造与地质工程一体化压裂优化设计决策系统,是体积改造技术发展与应用的重要方向。图12表1参98

本文引用格式

胥云 , 雷群 , 陈铭 , 吴奇 , 杨能宇 , 翁定为 , 李德旗 , 蒋豪 . 体积改造技术理论研究进展与发展方向[J]. 石油勘探与开发, 2018 , 45(5) : 874 -887 . DOI: 10.11698/PED.2018.05.14

Abstract

Based on the theoretical study and field application of volume stimulation in horizontal wells over the past 10 years, the core connotation of volume stimulation was further interpreted. The implementation methods, design models and key issues were analyzed, and the future development direction was put forward. The research shows that the multi-cluster limited entry technique can achieve homogenous growth of multiple fractures. The hybrid stimulation of “breaking rock by gel stimulation + carrying proppant by slick water” plus small-particle proppant can reduce the fracture complexity near the well bore and increase stimulated reservoir volume (SRV) in the far-field. The requirement of fracture conductivity in unconventional formations can be met by shear-sustained fractures and proppant-transporting slick water. The optimum well spacing between a child well and a parent well should be determined by the stimulation modes, injection volume and pressure drawdown. Reconstructing seepage field, stress field and stimulation targets is crucial for improving the stimulation results in a horizontal well. Reducing cluster spacing and well spacing is the basis for establishing development modes of fracture-controlled reserves. Fracturing-design decision system based on “spatial-mode stimulation” and geology-engineering integration is an important research direction for volume stimulation techniques.

参考文献

[1] 吴奇, 胥云, 王腾飞, 等. 增产改造理念的重大变革: 体积改造技术概论[J]. 天然气工业, 2011, 31(4):7-12.
WU Qi, XU Yun, WANG Tengfei, et al.The resolution of reservoir stimulation: An introduction of volume stimulation[J]. Natural Gas Industry, 2011, 31(4): 7-12.
[2] 吴奇, 胥云, 王晓泉, 等. 非常规储集层体积改造技术: 内涵、优化设计与实现[J]. 石油勘探与开发, 2012, 39(3): 352-358.
WU Qi, XU Yun, WANG Xiaoquan, et al.Volume stimulation technology of unconventional reservoirs: Connotation, optimization design and implementation[J]. Petroleum Exploration and Development, 2012, 39(3): 352-358.
[3] 吴奇, 胥云, 张守良, 等. 非常规储集层体积改造技术核心理论与优化设计关键[J]. 石油学报, 2014, 35(4): 706-714.
WU Qi, XU Yun, ZHANG Shouliang, et al.The core theories and key optimization designs of volume stimulation technology for unconventional reservoirs[J]. Acta Petrolei Sinica, 2014, 35(4): 706-714.
[4] MAXWELL S C, URBANCICT I, STEINSBERGER N, et al.Microseismic imaging of hydraulic fracture complexity in the Barnett shale[R]. SPE 77440, 2002.
[5] MAYERHOFER M J, LOLON E P, YOUNGBLOOD J E, et al.Integration of microseismic fracture mapping results with numerical fracture network production modeling in the Barnett shale[R]. SPE 102103, 2006.
[6] MAYERHOFER M J, LOLON E P, WARPINSKIN R, et al.What is stimulated reservoir volume?[R]. SPE 119890, 2010.
[7] 雷群, 胥云, 蒋廷学, 等. 用于提高低-特低渗透油气藏改造效果的缝网压裂技术[J]. 石油学报, 2009, 30(2): 237-241.
LEI Qun, XU Yun, JIANG Tingxue, et al.Fracture network stimulation technique for improving post-stimulation performance of low and ultra-low permeability reservoirs[J]. Acta Petrolei Sinica, 2009, 30(2): 237-241.
[8] KARNIADAKIS G E, BESKOK A.Microflows and nanoflows: Fundamentals and simulation[M]. Berlin: Springer, 2005.
[9] 朱维耀, 亓倩. 页岩气多尺度复杂流动机理与模型研究[J]. 中国科学: 技术科学, 2016, 46(2): 111-119.
ZHU Weiyao, QI Qian.Study on the multi-scale nonlinear flow mechanism and model of shale gas[J]. SCIENTIA SINICA Technologica, 2016, 46(2): 111-119.
[10] 朱维耀, 岳明, 高英, 等. 致密油层体积压裂非线性渗流模型及产能分析[J]. 中国矿业大学学报, 2014, 43(2): 248-254.
ZHU Weiyao, YUE Ming, GAO Ying, et al.Nonlinear flow model and productivity of stimulated reservoir volume in tight oil reservoirs[J]. Journal of China University of Minning & Technology, 2014, 43(2): 248-254.
[11] ALCOSER L A, OVALLE A, PARSONS M.The Bakken: Utilizing a petroleum system based analysis to optimally exploit one of the world[R]. SPE 158918, 2012.
[12] PEARSON M, GRIFFIN L, WEIJERS L.Breaking up is hard to do: Creating hydraulic fracture complexity in the Bakken central basin[R]. SPE 163827, 2013.
[13] ROMANSON R, PONGRATZ R, EAST L, et al.Multistage stimulation processes can help achieve and control branch stimulation and increase stimulated reservoir volume for unconventional reservoirs[R]. SPE 142959, 2011.
[14] 修乃岭, 严玉忠, 窦晶晶, 等. 四川长宁A平台页岩气水平井组压裂地面测斜仪监测评估[J]. 石油地质与工程, 2016, 30(5): 124-126.
XIU Nailing, YAN Yuzhong, DOU Jingjing, et al.Fracture monitoring by surface tiltmeter in horizontal-well A pad in Changning, Sichuan[J]. Petroleum Geology and Engineering, 2016, 30(5): 124-126.
[15] CIPOLLA C, WALLACE J.Stimulated reservoir volume: A misapplied concept?[R]. SPE 168596, 2014.
[16] SHELLEY R, SHAH K, UNDERWOOD K, et al.Utica well performance evaluation: A multiwell pad case history[R]. SPE 181400, 2016.
[17] JOSEPH Y, THOMAS D, CRISS V, et al.Influencing fracture growth with stage sequencing[R]. SPE 184057, 2016.
[18] THEERAPAT S, AZRA N T.Evaluation of multistage hydraulic fracture patterns in naturally fractured tight oil formations utilizing a coupled geomechanics-fluid flow model: Case study for an Eagle Ford shale well pad[C]//50th U.S. Rock Mechanics/Geomechanics Symposium. Houston, Texas: American Rock Mechanics Association, 2016.
[19] AGHARAZI A.Determining maximum horizontal stress with microseismic focal mechanisms: Case studies in the Marcellus, Eagle Ford, Wolfcamp[R]. URTEC 2461621, 2016.
[20] BAZAN L W, LARKIN S D, LATTIBEUDIERE M G, et al.Improving production in the Eagle Ford shale with fracture modeling, increased fracture conductivity, and optimized stage and cluster spacing along the horizontal wellbore[R]. SPE 138425, 2010.
[21] ZHU J, FORREST J, XIONG H J, et al.Cluster spacing and well spacing optimization using multi-well simulation for the lower Spraberry shale in Midland basin[R]. SPE 187485, 2017.
[22] FARHAN A, RAJ M, ROHANN J, et al.Stacked pay pad development in the Midland Basin[R]. SPE 187496, 2017.
[23] Carrizo Oil & Gas, Inc. Wells Fargo2015 Energy Symposium [EB/OL]. (2015-12-08)[2018-03-09]. https://s22.q4cdn.com/193387661/ files/doc_presentations/12- 8-15_Wells_Fargo_conference.pdf.
[24] Halliburton. Halliburton teams up with eclipse resources to complete longest lateral well in the U.S.[EB/OL]. (2016-03-31)[2018-03-09]. http://www.halliburton.com/public/news/pubsdata/press_release/2016/ halliburton-teams-up-to-complete-longest-lateral-well-in-us.html.
[25] BUNGER A P.Analysis of the power input needed to propagate multiple hydraulic fractures[J]. International Journal of Solids & Structures, 2013, 50(10): 1538-1549.
[26] DETOURNAY E.Propagation regimes of fluid-driven fractures in impermeable rocks[J]. International Journal of Geomechanics, 2004, 4(1): 35-45.
[27] LECAMPION B, DESROCHES J, WENG X, et al.Can we engineer better multistage horizontal completions? Evidence of the importance of near-wellbore fracture geometry from theory, lab and field experiments[R]. SPE 173363, 2015.
[28] WU K, OLSON J E.Mechanisms of simultaneous hydraulic-fracture propagation from multiple perforation clusters in horizontal wells[R]. SPE 178925, 2015.
[29] SOMANCHI K, BREWER J, REYNOLDS A.Extreme limited entry design improves distribution efficiency in plug-n-perf completions: Insights from fiber-optic diagnostics[R]. SPE 184834, 2017.
[30] WEDDLE P, GRIGGIN L, PEARSON C M.Mining the Bakken II: Pushing the envelope with extreme limited entry perforating[R]. SPE 189880, 2018.
[31] CIPOLLA C L, WARPINSKI N R, MAYHOFER M J.Hydraulic fracture complexity: Diagnosis, remediation, and exploration[R]. SPE 115771, 2008.
[32] ABASS H H, MEADOWS D L, BRUMLEY J L, et al.Oriented perforation: A rock mechanics view[R]. SPE 28555, 1994.
[33] CUTHILL D, YANG W B, HARDESTY J.Improved hydraulic stimulation perforation efficiency observed with constant entry hole and constant penetration perforating system[R]. SPE 184878, 2017.
[34] RABAA W E.Experimental study of hydraulic fracture geometry initiated from horizontal wells[R]. SPE 19720, 1989.
[35] BEUGELSDIJK L J L, PATER C J, SATO K. Experimental hydraulic fracture propagation in a multi-fractured medium[R]. SPE 59419, 2000.
[36] 付海峰, 刘云志, 梁天成, 等. 四川省宜宾地区龙马溪组页岩水力裂缝形态实验研究[J]. 天然气地球科学, 2016, 27(12): 2231-2236.
FU Haifeng, LIU Yunzhi, LIANG Tiancheng, et al.Laboratory study on hydraulic fracture geometry of Longmaxi Formation shale in Yibin area of Sichuan Province[J]. Natural Gas Geoscience, 2016, 27(12): 2231-2236.
[37] LECAMPION B, ABBAS S, PRIOUL R.Competition between transverse and axil hydraulic fractures of horizontal wells[R]. SPE 163848, 2013.
[38] WU K, OLSON J E.Numerical investigation of complex hydraulic fracture development in naturally fractured reservoirs[R]. SPE 173326, 2015.
[39] 胥云, 陈铭, 吴奇, 等. 水平井体积改造应力干扰计算模型及其应用[J]. 石油勘探与开发, 2016, 43(5): 780-786.
XU Yun, CHEN Ming, WU Qi, et al.Stress interference calculation model and its application in volume stimulation of horizontal wells[J]. Petroleum Exploration and Development, 2016, 43(5): 780-786.
[40] VALK P, ECONOMIDES M J.Hydraulic fracture mechanics[M]. New York: John Wiley & Sons, 1995.
[41] DARIN S R, HUITT J L.Effect of a partial monolayer of propping agent on fracture flow capacity[R]. SPE 1291, 1960.
[42] ELY J W, FOWLER S L, TINER R L, et al.“Slick water fracturing and small proppant” The future of stimulation or a slippery slope?[R]. SPE 170784, 2014.
[43] DAHL J, NGUYEN P, DUSTERHOFT R, et al.Application of micro-proppant to enhance well production in unconventional reservoirs: Laboratory and field results[R]. SPE 174060, 2015.
[44] CALVIN J, GRIESER B.Enhancement of well production in the SCOOP Woodford shale through the application of microproppant[R]. SPE 184863, 2017.
[45] ADACHI J, SIEBRITS E, PEIRCE A, et al.Computer simulation of hydraulic fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 739-757.
[46] SETTARI A, CLEARY M P.Three-dimensional simulation of hydraulic fracturing[J]. Journal of Petroleum Technology, 1982, 36(7): 1177-1190.
[47] PALMER I D, CARROLL H B.Numerical solution for height and elongated hydraulic fractures[R]. SPE 11627, 1983.
[48] LEE T S, ADVANI S H, LEE J K.Three-dimensional modeling of hydraulic fractures in layered media: Part I: Finite element formulations[J]. Journal of Energy Resources Technology, 1990, 112(1): 1-9.
[49] CARTER B J, DESROCHES J, INGRAFFEA A R, et al.Simulating fully 3D hydraulic fracturing[M]. New York: John Wiley & Sons, 2000: 525-557.
[50] HOSSAIN M M, RAHMAN M K, RAHMAN S S, et al.Volumetric growth and hydraulic conductivity of naturally fractured reservoirs during hydraulic stimulation: A case study using Australian conditions[R]. SPE 63173, 2000.
[51] ROBERT W, ROSALIND A, BILL D.Integration of seismic anisotropy and reservoir performance data for characterization of naturally fractured reservoirs using discrete feature network models[R]. SPE 84412, 2005.
[52] OLSON J E.Multi-fracture propagation modeling: Applications to hydraulic fracturing in shales and tight gas sands[C]//The 42nd U.S. Rock Mechanics Symposium (USRMS). San Francisco: American Rock Mechanics Association, 2008.
[53] WU K, OLSON J E.Simultaneous multifracture treatments: Fully coupled fluid flow and fracture mechanics for horizontal wells[R]. SPE 167626, 2015.
[54] DAHI-TALEGHANI A, OLSON J E.Analysis of multistranded hydraulic fracture propagation: An improved model for the interaction between induced and natural fractures[R]. SPE 124884, 2009.
[55] DAHI-TALEGHANI A, OLSON J E.Numerical modeling of multi- stranded hydraulic fracture propagation: Accounting for the interaction between induced and natural fractures[J]. SPE Journal, 2011, 16(3): 575-581.
[56] MEYER B R, BAZAN L W.A discrete fracture network model for hydraulically induced fractures: Theory, parametric and case studies[R]. SPE 140514, 2011.
[57] MAXWELL S C, POPE T, CIPOLLA C, et al.Understanding hydraulic fracture variability through integrating microseismicity and seismic reservoir characterization[R]. SPE 144207, 2011.
[58] KRESSE O, COHEN C, WENG X, et al.Numerical modeling of hydraulic fracturing in naturally fractured formations[J]. U.S. Rock Mechanics, 2011, 15(5): 516-535.
[59] GU H, WENG X W.Criterion for fracture crossing frictional interfaces at non-orthogonal angles[R]. Salt Lake City, Utah: 44th U.S. Rock Mechanics Symposium and 5th U.S.-Canada Rock Mechanics Symposium, 2010.
[60] CHUPRAKOV D, MELCHAEVA O, PRIOUL R.Injection-sensitive mechanics of hydraulic fracture interaction with discontinuities[J]. Rock Mechanics & Rock Engineering, 2014, 47(5): 1625-1640.
[61] COHEN C, KRESSE O, WENG X W.Stacked height model to improve fracture height growth prediction, and simulate interactions with multi-layer DFNs and ledges at weak zone interfaces[R]. SPE 184876, 2017.
[62] XU G S, WONG S W.Interaction of multiple non-planar hydraulic fractures in horizontal wells[R]. IPTC 17043, 2013.
[63] LONG G, XU G S.The effects of perforation erosion on practical hydraulic-stimulation applications[R]. SPE 185173, 2017.
[64] NASSIR M, SETTARI A.Prediction of SRV and optimization in tight gas and shale using a fully elasto-platic coupled geomechanical model[R]. SPE 163814, 2013.
[65] PROFIT M L, DUTKO M, YU J.Developing a framework to simulate the hydraulic stimulation of tight gas reservoirs based on integrative adaptive remeshing and combined finite/discrete element approach[C]//49th U.S. Rock Mechanics/Geomechanics Symposium. San Francisco: ARMA, 2015.
[66] ALFATAIERGE A.3D modeling and characterization of hydraulic fracture efficiency integrated with 4D/9C timelapse seismic interpretations in the Niobrara formation, Wattenberg field, Denver basin[D]. Colorado, USA : Colorado School of Mines, 2017.
[67] ALFATAIERGE A, MISKIMINS J L, DAVIS T L, et al.3D hydraulic fracture simulation integrated with 4D time-lapse multicomponent seismic and microseismic interpretation, Wattenberg field, Colorado[R]. SPE 189889, 2018.
[68] 陈勉. 页岩气储层水力裂缝转向扩展机制[J]. 中国石油大学学报(自然科学版), 2013, 37(5): 88-94.
CHEN Mian.Re-orientation and propagation of hydraulic fractures in shale gas reservoir[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(5): 88-94.
[69] 曾庆磊, 庄茁, 柳占立, 等. 页岩水力压裂中多簇裂缝扩展的全耦合模拟[J]. 计算力学学报, 2016, 33(4): 643-648.
ZENG Qinglei, ZHUANG Zhuo, LIU Zhanli, et al.Fully coupled modeling for multiple clusters growth of hydraulic fractures in shale[J]. Chinese Journal of Computational Mechanics, 2016, 33(4): 643-648.
[70] 王理想, 唐德泓, 李世海, 等. 基于混合方法的二维水力压裂数值模拟[J]. 力学学报, 2015, 47(6): 973-983.
WANG Lixiang, TANG Dehong, LI Shihai, et al.Numerical simulation of hydraulic stimulation by a mixed method in two dimensions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6) : 973-983.
[71] GUO J C, ZHAO X, ZHU H Y, et al.Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method[J]. Journal of Natural Gas Science & Engineering, 2015, 25: 180-188.
[72] ZOU Y S, MA X F, ZHANG S C, et al.Numerical Investigation into the influence of bedding plane on hydraulic fracture network propagation in shale formations[J]. Rock Mechanics & Rock Engineering, 2016, 49(9): 3597-3614.
[73] 陈铭, 胥云, 翁定为. 水平井多段压裂多裂缝扩展形态计算方法[J]. 岩石力学与工程学报, 2016(S2): 3906-3914.
CHEN Ming, XU Yun, WENG Dingwei.Calculation method for multi-fracture propagation geometry of multi-stage stimulation in horizontal wells[J]. Chinese Journal of Rock Mechanics & Engineering, 2016(S2): 3906-3914.
[74] 陈铭, 胥云, 吴奇, 等. 水平井体积改造多裂缝扩展形态算法: 不同布缝模式的研究[J]. 天然气工业, 2016, 36(8): 79-87.
CHEN Ming, XU Yun, WU Qi, et al.Algorithm for multi-fracture propagation morphology in horizontal well volume stimulation: Investigation on different fracture distribution patterns[J]. Natural Gas Industry, 2016, 36(8): 79-87.
[75] 赵金洲, 陈曦宇, 李勇明, 等. 水平井分段多簇压裂模拟分析及射孔优化[J]. 石油勘探与开发, 2017, 44(1): 117-124.
ZHAO Jinzhou, CHEN Xiyu, LI Yongming, et al.Numerical simulation of multi-stage stimulation and optimization of perforation in a horizontal well[J]. Petroleum Exploration & Development, 2017, 44(1): 117-124.
[76] 吴奇, 梁兴, 鲜成钢, 等. 地质-工程一体化高效开发中国南方海相页岩气[J]. 中国石油勘探, 2015, 20(4): 1-23.
WU Qi, LIANG Xing, XIAN Chenggang, et al.Geoscience-to- production integration ensures effective and efficient South China marine shale gas development[J]. China Petroleum Exploration, 2015, 20(4): 1-23.
[77] MODELAND N, BULLER D, CHONG K K.Statistical analysis of the effect of completion methodology on production in the Haynesville shale[R]. SPE 144120, 2011.
[78] Pioneer Natural Resources Company. Pioneer Natural Resources Q32016 earnings[EB/OL]. (2016-11-02)[2018-03-09]. https://wowza. earningscast.com/events/765ab27c4f3ee1c58398017c83295cc3/materials/ 15319/secured_download/eb88f8bc64a987bc49c886acf00721dd346fcb53.
[79] GU H R, SIEBRITS E, SABOUROV A.Hydraulic fracture modeling with bedding plane interfacial slip[R]. SPE 117445, 2008.
[80] CHRUPRAKOV D, PRIOUL R.Hydraulic fracture height containment by weak horizontal interfaces[R]. SPE 173337, 2016.
[81] Energen Corporation. Energen’s Gen 3 wells continue to deliver outstanding results[EB/OL]. (2017-11-08)[2018-03-09]. http://ir.energen. com/phoenix.zhtml?c= 94826&p=irol-newsArticle&ID=2315268.
[82] RAMURTHY M, BARREE R D, KUNDERT D P, et al.Surface-area vs. conductivity-type fracture treatments in shale reservoirs[J]. SPE Production & Operations, 2011, 26(4): 357-367.
[83] SHARMA M M, MANCHANDA R.The role of induced un-propped (IU) fractures in unconventional oil and gas wells[R]. SPE 174946, 2015.
[84] WENG X W, SESETTY V, KRESSE O.Investigation of shear- induced permeability in unconventional reservoirs[C]//49th U.S. Rock Mechanics/Geomechanics Symposium. San Francisco: ARMA, 2015.
[85] WU W W, KAKKAR P, ZHOU J H, et al.An experimental investigation of the conductivity of unpropped fractures in shales[R]. SPE 184858, 2017.
[86] WANG H Y, SHARMA M M.Estimating unpropped fracture conductivity and compliance from diagnostic fracture injection tests[R]. SPE 189844, 2018.
[87] SIERRA L, MAYERHOFER M.Induced fracture complexity, when is it really required in unconventional reservoir stimulation?[R]. SPE 168976, 2014.
[88] CIPOLLA C L, WARPINSKI N R, MAYERHOFER M J, et al.The relationship between fracture complexity, reservoir properties, and fracture treatment design[J]. SPE Production & Operations, 2010, 25(4): 438-452.
[89] MAYER B R, JACOT R H.Pseudosteady-state analysis of finite- conductivity vertical fractures[R]. SPE 95941, 2005.
[90] GU M, KULKAMI P, PAFIEE M, et al.Optimum fracture conductivity for naturally fractured shale and tight reservoirs[R]. SPE 171648, 2016.
[91] CINCO-LEY H, SAMANIEGO-V F.Transient pressure analysis for fractured wells[R]. SPE 7490, 1981.
[92] MILLER G, LINDSAY G, BAIHLY J, et al.Parent well restimulation: Economic safety nets in an uneconomic market[R]. SPE 180200, 2016.
[93] LINDSAY G, MILLER G, XU T, et al.Production performance of infill horizontal wells vs. pre-existing wells in the major US unconventional basins[R]. SPE 189875, 2018.
[94] GAKHAR K, SHAN D, RODIONOV Y, et al.Engineered approach for multi-well pad development in Eagle Ford Shale[R]. SPE 2431182, 2016.
[95] BERCHENKO I, DETOURNAY E.Deviation of hydraulic fractures through poroelastic stress changes induced by fluid injection and pumping[J]. International Journal of Rock Mechanics & Mining Sciences, 1997, 34(6): 1009-1019.
[96] ROUSSEL N P.Stress reorientation in low permeability reservoirs[D]. Austin, Texas: University of Texas at Austin, 2012.
[97] COURTIER J, GRAY D, SMITH M, et al.Legacy well protection refrac mitigates offset well completion communications in joint industry project[R]. SPE 181767, 2016.
[98] Enventure. Enventure global technology and vorpal energy solutions announce a strategic collaboration focused on the refract market[EB/OL]. (2015-08-31)[2018-03-09].http://www.enventuregt.com/en/news-resources/news/enventure-global-technology-and-vorpal-energy-solutions-announce-strategic.
文章导航

/