油气田开发

全直径砾岩长岩心水驱后烟道气驱油与埋存实验

  • 韩海水 ,
  • 李实 ,
  • 马德胜 ,
  • 姬泽敏 ,
  • 俞宏伟 ,
  • 陈兴隆
展开
  • 1. 提高石油采收率国家重点实验室,北京 100083;
    2. 中国石油勘探开发研究院,北京 100083
韩海水(1985-),男,满族,河北秦皇岛人,博士,中国石油勘探开发研究院工程师,主要从事气驱提高石油采收率理论与技术方面的研究。地址:北京市海淀区学院路20号,中国石油勘探开发研究院采收率研究所,邮政编码:100083。Email: hanhaishui@petrochina.com.cn

收稿日期: 2017-12-26

  网络出版日期: 2018-07-18

基金资助

中国石油天然气股份有限公司重大科技专项(2014E-3601); 中国石油天然气股份有限公司油气田开发重大科技项目(2016A-1002); 国家重点研发计划项目“CO2驱油技术及地质封存安全监测”(2018YFB0605501)

Investigation of flue gas displacement and storage after the water flooding in a full diameter conglomerate long-core

  • HAN Haishui ,
  • LI Shi ,
  • MA Desheng ,
  • JI Zemin ,
  • YU Hongwei ,
  • CHEN Xinglong
Expand
  • 1. State Key Laboratory of Enhanced Oil Recovery, Beijing 100083, China;
    2. Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China;

Received date: 2017-12-26

  Online published: 2018-07-18

摘要

选取新疆油田某砾岩油藏目的层段的5块全直径岩心拼接成直径10 cm、长度52.3 cm的长岩心组,利用中国自主研发的全直径长岩心驱替装置,模拟砾岩油藏衰竭、水驱、注烟道气驱、烟道气-水交替驱、CO2驱及烟道气埋存等全开发过程,并评价了烟道气驱的驱替特征和开发效果。研究表明,全直径岩心驱替实验可更大程度地模拟砾岩油藏的真实驱替特征和渗流特点;火驱产出烟道气可应用于砾岩油藏水驱后进一步提高采收率,取得较好开发效果的关键是选择合理的注气时机、注气压力、注气方式;水驱中期优势渗流通道尚未完全形成,此时适当提高油藏压力后转烟道气-水交替驱可避免烟道气过早气窜而形成无效循环,较大幅度提高采收率;烟道气-水交替驱油过程中,储集层可有效吸收烟道气中有害气体硫化氢,同时可实现烟道气的安全有效埋存。图5表7参21

本文引用格式

韩海水 , 李实 , 马德胜 , 姬泽敏 , 俞宏伟 , 陈兴隆 . 全直径砾岩长岩心水驱后烟道气驱油与埋存实验[J]. 石油勘探与开发, 2018 , 45(5) : 847 -852 . DOI: 10.11698/PED.2018.05.10

Abstract

Five full diameter cores were obtained from a conglomerate reservoir of Xinjiang oilfield. They were assembled into a full diameter long-core group, with a total length of 52.3 cm, 10 cm in diameter. With the full diameter long-core flooding system designed and produced in China, experiments were conducted to simulate depletion, water flooding, flue gas flooding, flue gas-water alternative flooding, CO2 flooding, and flue gas storage in the conglomerate reservoir, and the characteristics and effect of the flue gas flooding were evaluated. The study shows that full diameter long-core flooding experiment is more effective in simulating the gas displacement and percolation characteristics in the conglomerate reservoir. According to the experimental results, the flue gas produced from fire flooding can be used to enhance oil recovery of the water-drived conglomerate reservoir. The key to reaching a favorable development effect is to select the right timing, injection pressure and mode of flooding. In the middle of the water flooding stage, when the dominant percolation channel has not been formed, injecting flue gas and water alternatively after increasing reservoir pressure could avoid premature gas channeling and enhance oil recovery. During the flooding, the poisonous gas, H2S, was absorbed efficiently in cores and fluids, and flue gas was stored safely.

参考文献

[1] 李庆昌, 赵立春. 砾岩油田开发[M]. 北京: 石油工业出版社, 1997: 77-95.
LI Qingchang, ZHAO Lichun.Development of conglomerate oil fields[M]. Beijing: Petroleum Industry Press, 1997: 77-95.
[2] 沈平平, 廖新维. 二氧化碳地质埋存与提高石油采收率技术[M]. 北京: 石油工业出版社, 2009: 128-161.
SHEN Pingping, LIAO Xinwei.The technology of CO2 geological storage and enhanced oil recovery[M]. Beijing: Petroleum Industry Press, 2009: 128-161.
[3] LI Y, WANG H P, LIAO C Y, et al.Dual alkali solvent system for CO2 capture from flue gas[J]. Environmental Science & Technology, 2017, 51(15): 8824-8831.
[4] 秦积舜, 韩海水, 刘晓蕾. 美国CO2驱油技术应用及启示[J]. 石油勘探与开发, 2015, 42(2): 209-216.
QIN Jishun, HAN Haishui, LIU Xiaolei.The application and enlightenment of Carbon Dioxide flooding in United State[J]. Petroleum Exploration and Development, 2015, 42(2): 209-216.
[5] 韩海水, 袁士义, 李实, 等. 二氧化碳在链状烷烃中的溶解性能及膨胀效应[J]. 石油勘探与开发, 2015, 42(1): 88-93.
HAN Haishui, YUAN Shiyi, LI Shi, et al.The dissolving capacity and volume expansion of n-alkanes due to Carbon Dioxide[J]. Petroleum Exploration and Development, 2015, 42(1): 88-93.
[6] 刘晓蕾, 秦积舜, 韩海水, 等. C16+正构烷烃-二氧化碳体系的相变边界变化规律[J]. 石油勘探与开发, 2017, 44(1): 104-109.
LIU Xiaolei, QIN Jishun, HAN Haishui, et al.Multiphase boundary of C16+ heavy n-alkanes and CO2 systems[J]. Petroleum Exploration and Development, 2017, 44(1): 104-109.
[7] 杜东兴, 王德玺, 贾宁洪, 等. 多孔介质内CO2泡沫液渗流特性实验研究[J]. 石油勘探与开发, 2016, 43(3): 456-461.
DU Dongxing, WANG Dexi, JIA Ninghong, et al.Experiments on CO2 foam seepage characteristics in porous media[J]. Petroleum Exploration and Development, 2016, 43(3): 456-461.
[8] BENDER S, AKIN S.Flue gas injection for EOR and sequestration: Case study[J]. Journal of Petroleum Science and Engineering, 2017, 157: 1033-1045.
[9] 李兆敏, 孙晓娜, 鹿滕, 等. 烟道气改善超稠油蒸汽吞吐开发效果研究[J]. 新疆石油地质, 2014, 35(3): 303-306.
LI Zhaomin, SUN Xiaona, LU Teng, et al.Study on the performance of flue gas improving steam huff and puff for super heavy oil reservoir[J]. Xinjiang Petroleum Geology, 2014, 35(3): 303-306.
[10] DONG M, HUANG S.Flue gas injection for heavy oil recovery[J]. Journal of Canadian Petroleum Technology, 2002, 41(9): 1-7.
[11] SHOKOYA O S, MEHTA S A, MOORE R G, et al.Evaluation of the miscibility and contribution of flue gas to oil recovery under high pressure air injection[J]. Journal of Canadian Petroleum Technology, 2002, 41(10): 1-11.
[12] SRIVASTAVA R K, HUANG S S, DONG M Z.Comparative effectiveness of CO2 produced gas, and flue gas for enhanced heavy oil recovery[J]. SPE Reservoir Evaluation & Engineering, 1999, 2(3): 238-247.
[13] 付美龙, 熊帆, 张凤山, 等. 二氧化碳和氮气及烟道气吞吐采油物理模拟实验[J]. 油气地质与采收率, 2010, 17(1): 68-73.
FU Meilong, XIONG Fan, ZHANG Fengshan, et al.Physical analogue experiment of CO2, N2 and flue gas stimulation for oil production[J]. Petroleum Geology and Recovery Efficiency, 2010, 17(1): 68-73.
[14] 李向良, 李振泉, 郭平, 等. 二氧化碳混相驱的长岩心物理模拟[J]. 石油勘探与开发, 2004, 31(5): 102-104.
LI Xiangliang, LI Zhenquan, GUO Ping, et al.Long core physical simulation for CO2 miscible displacement[J]. Petroleum Exploration and Development, 2004, 31(5): 102-104.
[15] 郭永伟, 杨胜来, 李良川, 等. 长岩心注天然气驱油物理模拟实验[J]. 断块油气田, 2009, 16(6): 76-78.
GUO Yongwei, YANG Shenglai, LI Liangchuan, et al.Experiment on physical modeling of displacement oil with natural gas for long core[J]. Fault-Block Oil & Gas Field, 2009, 16(6): 76-78.
[16] 张艳玉, 陈钢, 何鲁平, 等. 天然气驱长岩心室内实验研究[J]. 实验力学, 2007, 22(2): 161-165.
ZHANG Yanyu, CHEN Gang, HE Luping, et al.A study on long-core experiment of natural gas driving[J]. Journal of Experimental Mechanics, 2007, 22(2): 161-165.
[17] 程信芳, 刘桂芳, 熊家政. 全直径岩心水驱油实验技术研究[J]. 大庆石油地质与开发, 1993, 12(1): 46-51.
CHENG Xinfang, LIU Guifang, XIONG Jiazheng.Study of whole core water displacement oil experiment[J]. Petroleum Geology & Oilfield Development in Daqing, 1993, 12(1): 46-51.
[18] 樊建明, 何永宏, 董妍, 等. 低渗储层全直径岩心对CO2相变影响的实验研究[J]. 西安石油大学学报(自然科学版), 2009, 24(6): 21-23.
FAN Jianming, HE Yonghong, DONG Yan, et al.Experiment research of the phase transition of carbon dioxide in the true core of low permeability reservoir[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2009, 24(6): 21-23.
[19] 赵磊, 潘毅, 刘学利, 等. 缝洞型储层全直径岩心注气吞吐替油实验研究[J]. 油气藏评价与开发, 2015, 5(1): 39-43.
ZHAO Lei, PAN Yi, LIU Xueli, et al.Research on gas injection puff and huff displacement of full diameter core in fracture-vug carbonate reservoir[J]. Reservoir Evaluation and Development, 2015, 5(1): 39-43.
[20] 杨胜来, 魏俊之. 油层物理学[M]. 北京: 石油工业出版社, 2004: 18-42.
YANG Shenglai, WEI Junzhi.Petrophysics[M]. Beijing: Petroleum Industry Press, 2004: 18-42.
[21] 胡文瑞, 魏漪, 鲍敬伟. 中国低渗透油气藏开发理论与技术进展[J]. 石油勘探与开发, 2018, 45(4): 646-656.
HU Wenrui, WEI Yi, BAO Jingwei.Development theory and technology of low permeability reservoirs in China[J]. Petroleum Exploration and Development, 2018, 45(4): 646-656.
文章导航

/