油气田开发

大庆油田化学驱提高采收率技术

  • 孙龙德 ,
  • 伍晓林 ,
  • 周万富 ,
  • 李学军 ,
  • 韩培慧
展开
  • 中国石油大庆油田有限责任公司,黑龙江大庆 163002
孙龙德(1962-),男,山东寿光人,中国工程院院士,主要从事油气田开发工程与石油地质方面的研究。地址:黑龙江省大庆市,中国石油大庆油田有限责任公司,邮政编码:163002。E-mail: sld@petrochina.com.cn

收稿日期: 2018-02-26

  修回日期: 2018-05-08

  网络出版日期: 2018-05-28

基金资助

国家重大科技专项“大型油气田及煤层气开发”(2011ZX05052); 国家重大科技专项“大庆长垣特高含水油田提高采收率示范工程”(2011ZX05010)

Technologies of enhancing oil recovery by chemical flooding in Daqing Oilfield, NE China

  • SUN Longde ,
  • WU Xiaolin ,
  • ZHOU Wanfu ,
  • LI Xuejun ,
  • HAN Peihui
Expand
  • PetroChina Daqing Oilfield Co. Ltd., Daqing 163002, China

Received date: 2018-02-26

  Revised date: 2018-05-08

  Online published: 2018-05-28

摘要

通过跟踪分析大庆油田20世纪70年代以来开展的化学驱技术攻关实践,系统总结了所形成的化学驱理论、技术的适应性及存在问题,提出了未来的发展方向及思路。大庆油田在化学驱提高采收率技术方面,主要建立了低酸值原油形成超低界面张力的表面活性剂与原油匹配关系理论,自主研制出系列表面活性剂产品;形成化学驱注入参数优化及数值模拟等关键技术;发展了化学驱分质分层注入、清防垢采油、配注及采出液处理工艺,形成了配套的采油及地面工程技术。大庆油田化学驱应用效果显著,聚合物驱提高采收率12%,三元复合驱提高采收率18%。进一步提高化学驱采收率,可从3个方面开展攻关:①油藏表征由精细向精准发展;②提高采收率技术向智能、高效方向发展;③配套工艺向环保、高效、智能化发展。图12表4参17

本文引用格式

孙龙德 , 伍晓林 , 周万富 , 李学军 , 韩培慧 . 大庆油田化学驱提高采收率技术[J]. 石油勘探与开发, 2018 , 45(4) : 636 -645 . DOI: 10.11698/PED.2018.04.09

Abstract

By tracking and analyzing the research and practices of chemical flooding carried out in the Daqing Oilfield, NE China since the 1970s, the chemical flooding theory, technology adaptability and existing problems were systematically summarized, and directions and ideas of development in the future were proposed. In enhanced oil recovery by chemical flooding, the Daqing Oilfield developed theories related to compatibility between crude oil and surfactant that may form ultra-low interfacial tensions with low-acidity oil, and a series of surfactant products were developed independently. The key technologies for chemical flooding such as injection parameter optimization and numerical simulation were established. The technologies of separation injection, cleansing and anti-scaling, preparation and injection, and produced liquid processing were developed. The matching technologies of production engineering and surface facilities were formed. Through implementation of chemical flooding, the Daqing Oilfield achieved outstanding performances with enhanced recovery rate of 12% in polymer flooding and with enhanced recovery rate of 18% in ASP flooding. To further enhance the oil recovery of chemical flooding, three aspects need to be studied: (1) fine characterization of reservoirs; (2) smart and efficient recovery enhancement technologies; (3) green, high-efficiency and smart matching processes.

参考文献

[1] NELSON R C, POPE G A.Phase relationships in chemical flooding[J]. SPE Journal, 1978, 18(5): 325-338.
[2] MEYERS J J, PITTS M J, WYAR K.Alkaline/surfactant/polymer flood of the West Kielh, Minnelusa Unite[R]. SPE 24144, 1992.
[3] STOLL W M, SHUREQI H A, FINOL J, et al.Alkaline/surfactant/ polymer flood: From the laboratory to the field[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(6): 702-712.
[4] DENNEY D.Progress and effects of ASP flooding[J]. Journal of Petroleum Technology, 2013, 65(1): 77-81.
[5] 唐曾熊. 大庆油田注水开发[J]. 石油学报, 1980, 1(1): 63-76.
TANG Zengxiong.Development of Daqing Oilfield by pressure maintenance through water injection: A case history[J]. Acta Petrolei Sinica, 1980, 1(1): 63-76.
[6] 程杰成, 吴军政, 胡俊卿. 三元复合驱提高原油采收率关键理论与技术[J]. 石油学报,2014, 35(2): 310-318.
CHENG Jiecheng, WU Junzheng, HU Junqing.Key theories and technologies for enhanced oil recovery of alkaline/surfactant/ polymer flooding[J]. Acta Petrolei Sinica, 2014, 35(2): 310-318.
[7] 王德民, 王刚, 吴文祥, 等. 黏弹性驱替液所产生的微观力对驱油效率的影响[J]. 西安石油大学学报(自然科学版), 2008, 23(1): 43-55.
WANG Demin, WANG Gang, WU Wenxiang, et al.Effect of micro-forces generated by viscoelastic displacement fluid on flooding efficiency[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2008, 23(1): 43-55.
[8] 伍晓林, 楚艳苹. 大庆原油中酸性及含氮组分对界面张力的影响[J]. 石油学报(石油加工), 2013, 29(4): 681-686.
WU Xiaolin, CHU Yanping.Effects of acidic and nitrogenous components on interfacial tension of Daqing crude oil[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2013, 29(4): 681-686.
[9] 何曼君, 陈维孝, 董西霞. 高分子物理[M]. 上海: 复旦大学出版社, 2003: 429-441.
HE Manjun, CHEN Weixiao, DONG Xixia.Polymer physics[M]. Shanghai: Fudan University Press, 2003: 429-441.
[10] 程杰成, 王庆国, 王俊, 等. 强碱三元复合驱钙、硅垢沉积模型及结垢预测[J]. 石油学报, 2016, 37(5): 653-659.
CHENG Jiecheng, WANG Qingguo, WANG Jun, et al.Ca/Si scale sedimentary model in the strong-base ASP flooding block and scaling prediction[J]. Acta Petrolei Sinica, 2016, 37(5): 653-659.
[11] KARAMBEIGI M S, ABBASSI R, ROAYAEI E, et al.Emulsion flooding for enhanced oil recovery: Interactive optimization of phase behavior, microvisual and core-flood experiments[J]. Journal of Industrial & Engineering Chemistry, 2015, 29(2): 382-391.
[12] AZIZ K, SETTARI A.油藏数值模拟[M]. 袁士义, 王家禄, 译. 北京: 石油工业出版社, 2004: 12-16.
AZIZ K, SETTARI A.Petroleum reservoir simulation[M]. YUAN Shiyi, WANG Jialu, Trans. Beijing: Petroleum Industry Press, 2004: 12-16.
[13] POPE G A.The application of fractional flow theory to enhanced oil recovery[J]. SPE Journal, 1980, 20(3): 191-205.
[14] KARAZINCIR O, THACH S, WEI W, et al.Scale formation prevention during ASP flooding[R]. SPE 141410, 2011.
[15] ALWI N, BORHAN N, IBRAHIM J, et al.Managing micro-emulsion and scale during ASP flooding for North Sabah Field EOR[R]. SPE 24984, 2014.
[16] WILSON A.Modeling, monitoring aid fight against scale in alkali/surfactant/polymer floods[J]. Journal of Petroleum Technology, 2014, 66(6): 122-126.
[17] DWYER P, DELAMAIDE E.Produced water treatment: Preparing for EOR projects[R]. SPE 174537, 2015.
文章导航

/