[1] NASA (National Aeronautics and Space Administration). Earth observatory[EB/OL]. (2018-02-02)[2018-02-28]. https://earthobservatory.nasa.gov/.
[2] WALKER N D.Satellite assessment of Mississippi River discharge plume variability: Causes and predictability[J]. Remote Sensing of Environment, 1996, 58(1): 21-35.
[3] WANG H, BI N, WANG Y, et al.Tide-modulated hyperpycnal flows off the Huanghe (Yellow River) mouth, China[J]. Earth Surface Processes and Landforms, 2010, 35(11): 1315-1329.
[4] LIU J P, LI A C, XU K H, et al.Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17): 2141-2156.
[5] LUO Z, ZHU J, WU H, et al.Dynamics of the sediment plume over the Yangtze Bank in the Yellow and East China Seas[J]. Journal of Geophysical Research: Oceans, 2017, 122(12): 10073-10090.
[6] MCPHERSON J G, SHANMUGAM G, MOIOLA R J.Fan-deltas and braid deltas: Varieties of coarse-grained deltas[J]. Geological Society of America Bulletin, 1987, 99(3): 331.
[7] IMRAN J, SYVITSKI J.Impact of extreme river events on coastal oceans[J]. Oceanography, 2000, 13(3): 85-92.
[8] BARNARD P L, HANES D M, RUBIN D M, et al.Giant sand waves at the mouth of San Francisco Bay[J]. Eos Transactions American Geophysical Union, 2006, 87(29): 285-289.
[9] GONZALEZ-SILVERA A, SANTAMARIA-DEL-ANGEL E, MILLÁN-NÚÑEZ R. Spatial and temporal variability of the Brazil-Malvinas Confluence and the La Plata Plume as seen by SeaWiFS and AVHRR imagery[J]. Journal of Geophysical Research: Oceans, 2006, 111(C6): 1-17.
[10] MATANO R P, PALMA E D, PIOLA A R.The influence of the Brazil and Malvinas Currents on the Southwestern Atlantic Shelf circulation[J]. Ocean Science, 2010, 6(4): 983-995.
[11] ARNAU P, LIQUETE C, CANALS M.River mouth plume events and their dispersal in the Northwestern Mediterranean Sea[J]. Oceanography, 2004, 17(3): 22-31.
[12] PELIZ A, MARCHCHESIELLO P, SANTOS A M P, et al. Surface circulation in the Gulf of Cadiz: 2. Inflow-outflow coupling and the Gulf of Cadiz slope current[J]. Journal of Geophysical Research: Oceans, 2009, 114(C3): 1-16.
[13] SHANMUGAM G.Modern internal waves and internal tides along oceanic pycnoclines: Challenges and implications for ancient deep- marine baroclinic sands[J]. AAPG Bulletin, 2013, 97(5): 767-811.
[14] MASUNAGA E, HOMMA H, YAMAZAKI H, et al.Mixing and sediment resuspension associated with internal bores in a shallow bay[J]. Continental Shelf Research, 2015, 110: 85-99.
[15] BALASUBRAMANIAN T, KHAN S A, RAJENDRAN N.Estuaries of India: State of the art report[M]. Annamalai Nagar, India: Environmental Information System Centre, Centre of Advanced Study in Marine Biology, Annamalai University, 2002: 138-145.
[16] JAGADEESAN L, JYOTHIBABU R, ANJUSHA A, et al.Ocean currents structuring the mesozooplankton in the Gulf of Mannar and the Palk Bay, southeast coast of India[J]. Progress in Oceanography, 2013, 110(3): 27-48.
[17] SRIDHAR P N.Understanding the suspended sediment dynamics in the coastal waters of the Bay of Bengal using high resolution ocean colour data[J]. Current Science, 2008, 94(11): 1499-1502.
[18] MIKHAILOV V N, KRAVTSOVA V I, ISUPOVA M V.Impact of reservoirs on the hydrological regime and morphology of the lower reaches and delta of the Zambezi River (Mozambique)[J]. Water Resources, 2015, 42(2): 170-185.
[19] SHANMUGAM G.Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons[J]. Marine and Petroleum Geology, 2003, 20(5): 471-491.
[20] SHILLINGTON F A, HUTCHINGS L, PROBYN T A, et al.Filaments and the Benguela frontal zone: Offshore advection or recirculating loops?[J]. South African Journal of Marine Science, 1992, 12(1): 207-218.
[21] SHANMUGAM G.The constructive functions of tropical cyclones and tsunamis on deep-water sand deposition during sea level highstand: Implications for petroleum exploration[J]. AAPG Bulletin, 2008, 92(4): 443-471.
[22] SHANMUGAM G.The tsunamite problem[J]. Journal of Sedimentary Research, 2006, 76(5): 718-730.
[23] CHU V W.Greenland ice sheet hydrology[J]. Progress in Physical Geography, 2013, 38(1): 19-54.
[24] CUFFEY K M, PATERSON W S B. The Physics of glaciers. Burlington[M]. MA: Butterworth-Heinemann, 2010.
[25] BROECKER W S, SANYAL A, TAKAHASHI T.The origin of Bahamian Whitings revisited[J]. Geophysical Research Letters, 2000, 27(22): 3759-3760.
[26] DIERSSEN H M, ZIMMERMAN R C, BURDIGE D J.Optics and remote sensing of Bahamian carbonate sediment whitings and potential relationship to wind-driven Langmuir circulation[J]. Biogeosciences, 2009, 6(3): 487-500.
[27] PURKIS S, CAVALCANTE G, ROHTLA L, et al.Hydrodynamic control of whitings on Great Bahama Bank[J]. Geology, 2017, 45(10): 939-942.
[28] KHANNA D R, YADAV P R.Biology of coelenterata[M]. New Delhi: Discovery Publishing, 2008.
[29] SHIPLEY S, SARNA-WOJCICKI A M. Distribution, thickness, and mass of late pleistocene and holocene tephra from major volcanoes in the northwestern United States: A preliminary assessment of hazards from volcanic ejecta to nuclear reactors in the Pacific Northwest[R]. Reston Virginia: US Geological Survey, 1983.
[30] PAULL C K, USSLER W, BOROWSKI W S, et al.Methane-rich plumes on the Carolina continental rise: Associations with gas hydrates[J]. Geology, 1995, 23(1): 89.
[31] DE JONG M P C, BATTJES J A. Low-frequency sea waves generated by atmospheric convection cells[J]. Journal of Geophysical Research: Oceans, 2004, 109(1): 1-18.
[32] FRIHY O E, FANOS A M, KHAFAGY A A, et al.Patterns of nearshore sediment transport along the Nile Delta, Egypt[J]. Coastal Engineering, 1991, 15(5): 409-429.
[33] FOREL F A.Les ravins sous-lacustres des fleuves glaciaires[M]. Paris: Comptes Rendus de l’Academie des Sciences, 1885.
[34] BATES C C.Rational theory of delta formation[J]. AAPG Bulletin, 1953, 37(9): 2119-2162.
[35] WRIGHT L D, YANG Z S, BORNHOLD B D, et al.Hyperpycnal plumes and plume fronts over the Huanghe (Yellow River) delta front[J]. Geo-Marine Letters, 1986, 6(2): 97-105.
[36] MULDER T, SYVITSKI J P, MIGEON S, et al.Marine hyperpycnal flows: Initiation, behavior and related deposits: A review[J]. Marine and Petroleum Geology, 2003, 20(6): 861-882.
[37] NOAA (National Oceanic and Atmospheric Administration). NOAA fisheries glossary: River plume[M]. Washington D.C.: NOAA, 2006.
[38] PIERSON T C, COSTA J E.Arheologic classification of subaerial sediment-water flows[C]//COSTA J E, WIECZOREK G F. Debris flows/avalanches: Process, recognition, and mitigation. Boulder, Colorado, USA: Geological Society of America, 1987.
[39] SHANMUGAM G.New perspectives on deep-water sandstones, origin, recognition, initiation, and reservoir quality[M]//ROGER M S. Handbook of petroleum exploration and production. Amsterdam: Elsevier, 2012.
[40] COLEMAN J M, PRIOR D B.Deltaic environments[C]//SCHOLLE P A, SPEARING D. Sandstone depositional environments: AAPG Memoir 31. Tulsa, OK: AAPG, 1982: 139-178.
[41] YU J B, FU Y Q, LI Y Z, et al.Effects of water discharge and sediment load on evolution of modern Yellow River Delta, China, over the period from 1976 to 2009[J]. Biogeosciences, 2011, 8(2): 2427-2435.
[42] MILLIMAN J D.River inputs[M]. Newyork: Academic Press, 2001.
[43] MILLIMAN J D, MEADE R H.World-wide delivery of river sediment to the oceans[J]. The Journal of Geology, 1983(1): 1-21.
[44] SHANMUGAM G. The hyperpycnite problem[J]. Journal of Palaeogeography, 2018, 7(3): in press.
[45] LI G X, TANG Z H, YUE S, et al.Sedimentation in the shear front off the Yellow River mouth[J]. Continental Shelf Research, 2001(6): 607-625.
[46] WU J REN J, LIU H, et al. Trapping and escaping processes of Yangtze River-derived sediments to the East China Sea[C]//CLIFT P D, HARFF J, WU J, et al. About this title: River-dominated shelf sediments of East Asian Seas. London: Geological Society, 2016: 153-169.
[47] WANG H, YANG Z, SAITO Y, et al.Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams[J]. Global and Planetary Change, 2006, 50(3): 212-225.
[48] GALLOWAY W E.Sediments and stratigraphic framework of the Copper River fan-delta, Alaska[J]. Journal of Sedimentary Research, 1976, 46(3): 726-737.
[49] FRAMIÑAN M B, BROWN O B. Study of the Río de la Plata turbidity front, Part 1: Spatial and temporal distribution[J]. Continental Shelf Research, 1996, 16(10): 1259-1282.
[50] FOSSATI M, PIEDRA-CUEVA I.A 3D hydrodynamic numerical model of the Río de la Plata and Montevideo’s coastal zone[J]. Applied Mathematical Modelling, 2013, 37(3): 1310-1332.
[51] FOSSATI M, CAYOCCA F, PIEDRA-CUEVA I.Fine sediment dynamics in the Río de la Plata[J]. Advances in Geosciences, 2014, 39: 75-80.
[52] KALE V S.Geomorphic effects of monsoon floods on Indian Rivers[J]. Flood Problem and Management in South Asia, 2003, 28(1): 65-84.
[53] MANKOFF K D, STRANEO F, CENEDESE C, et al.Structure and dynamics of a subglacial discharge plume in a Greenlandic Fjord[J]. Journal of Geophysical Research, 2016, 121(12): 8670-8688.
[54] GRIMA C, BLANKENSHIP D D, YOUNG D A, et al.Surface slope control on firn density at Thwaites Glacier, West Antarctica: Results from airborne radar sounding[J]. Geophysical Research Letters, 2014, 41(19): 6787-6794.
[55] SCAMBOS T A, BELL R E, ALLEY R B, et al.How much, how fast?: A science review and outlook for research on the instability of Antarctica’s Thwaites Glacier in the 21st century[J]. Global and Planetary Change, 2017, 153: 16-34.
[56] PURDY E G.Recent calcium carbonate facies of the Great Bahama Bank. 2. Sedimentary facies[J]. Journal of Geology, 1963, 71(4): 472-497.
[57] CLOUD P E, Jr. Environmeont of calcium carbonate deposition west of Andros Island, Bahamas[J]. Limnology & Oceanography, 1963, 8(4): 494.
[58] SHINN E A, STEINEN R P, LIDZ B H, et al.Whitings, a sedimentologic dilemma[J]. Journal of Sedimentary Research, 1989, 59(1): 147-161.
[59] PAULL C K, MATSUMOTO R, WALLACE P J, et al.Proceedings of the ocean drilling program, scientific results[M]. College Station, TX: Texas A & M University, 2000.
[60] RUPPEL C D, KESSLER J D.The interaction of climate change and methane hydrates[J]. Reviews of Geophysics, 2017, 55(1): 126-168.
[61] HAWATI P, NUGROHO S D, ANGGORO S, et al.Waves induce sediment transport at coastal region of Timbulsloko Demak[J]. IOP Conference Series: Earth and Environmental Science, 2017, 55(1): 12-48.
[62] PARKER G, TONIOLO H.Note on the analysis of plunging of density flows[J]. Journal of Hydraulic Engineering, 2007, 133(6): 690-694.
[63] MULDER T, SYVITSKI J P.Turbidity currents generated at river mouths during exceptional discharges to the world oceans[J]. The Journal of Geology, 1995, 103(3): 285-299.
[64] MAREN D S, WINTERWERP J C, WU B S, et al.Modelling hyperconcentrated flow in the Yellow River[J]. Earth Surface Processes and Landforms, 2010, 34(4): 596-612.
[65] FAN H, HUANG H, ZENG T Q, et al.River mouth bar formation, riverbed aggradation and channel migration in the modern Huanghe (Yellow) River delta, China[J]. Geomorphology, 2006, 74(1): 124-136.
[66] YANG T, CAO Y, WANG Y.A new discovery of the Early Cretaceous supercritical hyperpycnal flow deposits on Lingshan Island, East China[J]. Acta Geologica Sinica (English Edition), 2017, 91(2): 749-750.
[67] LIU J T, WANG Y H, YANG R J, et al.Cyclone-induced hyperpycnal turbidity currents in a submarine canyon[J]. Journal of Geophysical Research: Oceans, 2012, 117(4): 1-12.
[68] DALLIMORE C J, IMBERGER J, HODGES B R.Modeling a plunging underflow[J]. Journal of Hydraulic Engineering, 2004, 130(11): 1068-1076.
[69] PLINK-BJÖRKLUND P, STEEL R J. Initiation of turbidity currents: Outcrop evidence for Eocene hyperpycnal flow turbidites[J]. Sedimentary Geology, 2004, 165(1/2): 29-52.
[70] KOSTIC S, PARKER G, MARR J G.Role of turbidity currents in setting the foreset slope of clinoforms prograding into standing fresh water[J]. Journal of Sedimentary Research, 2002, 72(3): 353-362.
[71] KOSTIC S, PARKER G.Progradational sand-mud deltas in lakes and reservoirs. Part 2. Experiment and numerical simulation[J]. Journal of Hydraulic Research, 2003, 41(2): 141-152.
[72] LAMB M P, MCELROY B, KOPRIVA B, et al.Linking river-flood dynamics to hyperpycnal-plume deposits: Experiments, theory, and geological implications[J]. Geological Society of America Bulletin, 2010, 122(9): 1389-1400.
[73] ZAVALA C, ARCURI M.Intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics[J]. Sedimentary Geology, 2016, 337: 36-54.
[74] LUNA T M, FERNÁNDEZ E, DÍAZ M J. Derivation of a multilayer approach to model suspended sediment transport: Application to hyperpycnal and hypopycnal plumes[J]. Communication in Computational Physics, 2017, 22(5): 1439-1485.
[75] GAO S, WANG D, YANG Y, et al.Holocene sedimentary systems on a broad continental shelf with abundant river input: process-product relationships[J]. Geological Society, London, Special Publications, 2016, 429(1): 223-259.
[76] YANG R, JIN Z, LOON A J, et al.Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: Implications for unconventional petroleum development[J]. AAPG Bulletin, 2017, 101(1): 95-117.
[77] SHANMUGAM G. Climatic and tectonic controls 338 of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: Implications for unconventional petroleum development: Discussion[J]. AAPG Bulletin, 2018, 102: in press.
[78] WRIGHT L D, WISEMAN W J, BORNHOLD B D, et al.Marine dispersal and deposition of Yellow River silts by gravity-driven underflows[J]. Nature, 1988(6165): 629-632.
[79] MUTTI E.Turbidite sandstones[M]. Milan, Italy: Agip Special Publication, 1992: 275.
[80] WARRICK J A, SIMMS A R, RITCHIE A, et al.Hyperpycnal plume-derived fans in the Santa Barbara Channel, California[J]. Geophysical Research Letters, 2013, 40(10): 2081-2086.
[81] STEEL E, SIMMS A R, WARRICK J, et al.Highstand shelf fans: The role of buoyancy reversal in the deposition of a new type of shelf sand body[J]. Geological Society of America Bulletin, 2016, 128(11): 1717-1724.
[82] MUTTI E, DAVOLI G, TINTERRI R.Flood-related gravity-flow deposits in fluvial and fluvio-deltaic depositional systems and their sequence-stratigraphic implications[R]//Tremp, Spagna: Second High-Resolution Sequence Stratigraphy Conference, 1994: 131-136.
[83] SHANMUGAM G.Submarine fans: A critical retrospective (1950-2015)[J]. Journal of Palaeogeography, 2016, 5(2): 110-184.
[84] SHANMUGAM G.Slides, slumps, debris flows, turbidity currents, hyperpycnal flows, and bottom currents[C]//COCHRAN J K. Encyclopedia of ocean sciences. 3rd ed. Porter Hoagland: Elsevier/ Academic Press, 2018: in press.
[85] TURNER J S.Buoyancy effects in fluids, Series: Cambridge monographs on mechanics[M]. Cambridge: Cambridge University Press, 1980: 412.
[86] DOTT R H.Dynamics of subaqueous gravity depositional processes[J]. AAPG Bulletin, 1963, 47(1): 104-128.
[87] SANDERS J E.Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms[C]// MIDDLETON G V. Primary sedimentary structures and their hydrodynamic interpretation. Tulsa, OK: The Society of Economic Paleontologists and Mineralogists, 1965: 192-219.
[88] SHANMUGAM G.High-density turbidity currents: Are they sandy debris flows?[J]. Journal of Sedimentary Research, 1996, 66(1): 2-10.
[89] SHANMUGAM G.Global case studies of soft-sediment deformation structures (SSDS): Definitions, classifications, advances, origins, and problems[J]. Journal of Palaeogeography, 2017, 6(4): 251-320.
[90] PAN S, LIU H, ZAVALA C, et al.Sublacustrine hyperpycnal channel-fan system in a large depression basin: A case study of Nen 1 Member, Cretaceous Nenjiang Formation in the Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2017, 44(6): 911-922.
[91] TALLING P J.On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings[J]. Marine Geology, 2014, 352(3): 155-182.