油气勘探

腐泥型烃源岩生排烃模拟实验与全过程生烃演化模式

  • 李剑 ,
  • 马卫 ,
  • 王义凤 ,
  • 王东良 ,
  • 谢增业 ,
  • 李志生 ,
  • 马成华
展开
  • 1. 中国石油勘探开发研究院,河北廊坊 065007;
    2. 中国石油天然气集团公司天然气成藏与开发重点实验室,河北廊坊 065007
李剑(1966-),男,河北怀安人,博士,中国石油勘探开发研究院教授级高级工程师,主要从事天然气地球化学、成藏及资源评价等方面研究。地址:河北省廊坊市万庄44号信箱,中国石油勘探开发研究院天然气地质研究所,邮政编码:065007。E-mail:lijian69@petrochina.com.cn;马卫(1984-),男,山东肥城人,硕士,中国石油勘探开发研究院工程师,主要从事天然气地球化学、成藏及资源评价等方面研究。地址:河北省廊坊市万庄44号信箱,中国石油勘探开发研究院天然气地质研究所,邮政编码:065007。E-mail:mawei69@petrochina.com.cn

收稿日期: 2016-09-28

  修回日期: 2018-04-27

  网络出版日期: 2018-04-17

基金资助

国家科技重大专项(2016ZX05007-003,2011ZX05007-002);中国石油天然气股份有限公司;重大专项(2016B-0601,2014B-0608)

Modeling of the whole hydrocarbon-generating process of sapropelic source rock

  • LI Jian ,
  • MA Wei ,
  • WANG Yifeng ,
  • WANG Dongliang ,
  • XIE Zengye ,
  • LI Zhisheng ,
  • MA Chenghua
Expand
  • 1. Langfang Branch of PetroChina Research Institute of Petroleum Exploration & Development, Langfang 065007, China;
    2. Key Laboratory of Gas Reservoir Formation and Development, CNPC, Langfang 065007, China

Received date: 2016-09-28

  Revised date: 2018-04-27

  Online published: 2018-04-17

摘要

利用半开放体系生排烃模拟实验、封闭体系的黄金管生烃动力学模拟实验与开放体系的高温热解色谱质谱实验数据与实测数据,在经典生烃模式基础上,对烃源岩全过程生烃演化特征、排烃效率与滞留烃量、高过成熟阶段天然气来源及甲烷同系物裂解温度等问题开展了深入探讨。研究认为,腐泥型烃源岩在主生油阶段(Ro值为0.8%~1.3%)的排烃效率为30%~60%,高成熟阶段(Ro值为1.3%~2.0%)的排烃效率在60%~80%;高成熟阶段干酪根降解气与原油裂解气对总生气量的贡献比大致为1∶4,干酪根降解气量占20%,滞留液态烃裂解气量占13.5%,源外原油裂解气(包含聚集型与分散性原油裂解气)量占66.5%。初步确定了天然气的裂解下限,建立了烃源岩全过程生烃演化模式。图12表3参33

本文引用格式

李剑 , 马卫 , 王义凤 , 王东良 , 谢增业 , 李志生 , 马成华 . 腐泥型烃源岩生排烃模拟实验与全过程生烃演化模式[J]. 石油勘探与开发, 2018 , 45(3) : 445 -454 . DOI: 10.11698/PED.2018.03.09

Abstract

Based on experimental data from hydrocarbon generation with a half-open system, hydrocarbon generation kinetics modeling in gold tube of closed system, high temperature pyrolysis chromatography mass spectrometry experiment with open system and geological data, the characteristics of whole hydrocarbon-generating process, hydrocarbon expulsion efficiency and retained hydrocarbon quantity, origins of natural gas generated in high-over mature stage and cracking temperature of methane homologs were investigated in this study. The sapropelic source rock has a hydrocarbon expulsion efficiency of 30%-60% and 60%-80% in the major oil generation window (with Ro of 0.8%-1.3%) and high maturity stage (with Ro of 1.3%-2.0%) respectively; and the contribution ratio of kerogen degradation gas to oil cracking gas in total generated gas in high maturity stage is about 1:4. The degradation gas of kerogen accounts for 20%, the retained liquid hydrocarbon cracking gas accounts for 13.5%, and the amount of out-reservoir oil cracking gas (including aggregation type and dispersed oil cracking gas) accounts for 66.5%. The lower limit of gas cracking is determined preliminarily. Based on the new understandings, a model of the whole hydrocarbon-generating process of source rock is built.

参考文献

[1] 蒋有录. 石油天然气地质与勘探[M]. 北京: 石油工业出版社, 2006.
JIANG Youlu.Petroleum geology and exploration[M]. Beijing: Petroleum Industry Press, 2006.
[2] TISSOT B P, WELTE D H.Petroleum formation and occurrence[M]. New York: Springer-Verlag, 1984.
[3] 窦立荣. 蒂索的生烃模式在深层遇到挑战(Ⅰ)[J]. 石油勘探与开发, 2000, 27(2): 44.
DOU Lirong.Tissot’s model of hydrocarbon generation challenges in deep(Ⅰ)[J]. Petroleum Exploration and Development, 2000, 27(2): 44.
[4] 赵文智, 胡素云, 刘伟, 等. 论叠合含油气盆地多勘探“黄金带”及其意义[J]. 石油勘探与开发, 2015, 42(1): 1-12.
ZHAO Wenzhi, HU Suyun, LIU Wei, et al.The multi-staged “golden zones” of hydrocarbon exploration in superimposed petroliferous basins of onshore China and its significance[J]. Petroleum Exploration and Development, 2015, 42(1): 1-12.
[5] 杜小弟, 兰恩济. 蒂索烃源岩演化理论需要深化[J]. 大庆石油地质与开发, 2001, 20(6): 8-10.
DU Xiaodi, LAN Enji.The theory of Tissot hydrocarbon source rock evolution needs a further study[J]. Petroleum Geology & Oilfield Development in Daqing, 2001, 20(6): 8-10.
[6] 赵文智, 王兆云, 张水昌, 等. 有机质“接力成气”模式的提出及其在勘探中的意义[J]. 石油勘探与开发, 2005, 32(2): 1-7.
ZHAO Wenzhi, WANG Zhaoyun, ZHANG Shuichang, et al.Successive generation of natural gas from organic materials and its significance in future exploration[J]. Petroleum Exploration and Development, 2005, 32(2): 1-7.
[7] 王铜山, 耿安松, 李霞, 等. 海相原油沥青质作为特殊气源的生气特征及其地质应用[J]. 沉积学报, 2010, 28(4): 808-813.
WANG Tongshan, GENG Ansong, LI Xia, et al.Gas-generation mechanism of the pyrolysis of asphaltenes in marine crude oil and its geological application[J]. Acta Sedimentologica Sinica, 2010, 28(4): 808-813.
[8] 赵文智, 王兆云, 王东良, 等. 分散液态烃的成藏地位与意义[J]. 石油勘探与开发, 2015, 42(4): 401-411.
ZHAO Wenzhi, WANG Zhaoyun, WANG Dongliang, et al.Contribution and significance of dispersed liquid hydrocarbons to reservoir formation[J]. Petroleum Exploration and Development, 2015, 42(4): 401-411.
[9] 郑伦举, 秦建中, 张渠, 等. 中国海相不同类型原油与沥青生气潜力研究[J]. 地质学报, 2008, 82(3): 360-365.
ZHENG Lunju, QIN Jianzhong, ZHANG Qu, et al.Gas-generation potentiality of various marine crude oil and bitumen in China[J]. Acta Geologica Sinica, 2008, 82(3): 360-365.
[10] 刘文汇, 王杰, 腾格尔, 等. 南方海相不同类型烃源生烃模拟气态烃碳同位素变化规律及成因判识指标[J]. 中国科学: 地球科学, 2012, 42(7): 973-982.
LIU Wenhui, WANG Jie, TENGER, et al. Stable carbon isotopes of gaseous alkanes as genetic indicators inferred from laboratory pyrolysis experiments of various marine hydrocarbon source materials from southern China[J]. SCIENCE CHINA Earth Sciences, 2012, 55(6): 966-974.
[11] 王云鹏, 赵长毅, 王兆云, 等. 海相不同母质来源天然气的鉴别[J]. 中国科学: 地球科学, 2007, 37(增刊Ⅱ): 125-140.
WANG Yunpeng, ZHAO Changyi, WANG Zhaoyun, et al.Genetic indicators of various marine hydrocarbon source materials[J]. SCIENCE CHINA Earth Sciences, 2007, 37(Supp. Ⅱ): 125-140.
[12] 赵文智, 王兆云, 王红军, 等. 再论有机质“接力成气”的内涵与意义[J]. 石油勘探与开发, 2011, 38(2): 129-134.
ZHAO Wenzhi, WANG Zhaoyun, WANG Hongjun, et al.Further discussion on the connotation and significance of the natural gas relaying generation model from organic materials[J]. Petroleum Exploration and Development, 2011, 38(2): 129-134.
[13] 马卫, 李剑, 王东良, 等. 烃源岩排烃效率及其影响因素[J]. 天然气地球科学, 2016, 27(9): 1742-1749.
MA Wei, LI Jian, WANG Dongliang, et al.Hydrocarbon expulsion efficiency of source rocks and its influencing factors[J]. Natural Gas Geoscience, 2016, 27(9): 1742-1749.
[14] 田善思. 排烃效率研究方法及松辽盆地烃源岩排烃效率[D]. 大庆: 东北石油大学, 2013.
TIAN Shansi.The expulsion efficiency research methods and the Songliao Basin hydrocarbon source rock expulsion efficiency[D]. Daqing: Northeast Petroleum University, 2013.
[15] 陈中红, 刘伟. 控制东营凹陷烃源岩排烃的几个关键因素[J]. 西安石油大学学报(自然科学版), 2007, 22(6): 40-49.
CHEN Zhonghong, LIU Wei.Key factors of controlling the hydrocarbon expulsion of the source rock in Dongying sag[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2007, 22(6): 40-49.
[16] 李剑, 王义凤, 马卫, 等. 深层—超深层古老烃源岩滞留烃及其裂解气资源评价[J]. 天然气工业, 2015, 35(11): 9-15.
LI Jian, WANG Yifeng, MA Wei, et al.Resource evaluation of occluded hydrocarbon and occluded hydrocarbon cracking gas in deep and ultra-deep source rocks[J]. Natural Gas Industry, 2015, 35(11): 9-15.
[17] BURNHAM A K, SCHMIDT B J, BRAUN R L.A test of the parallel reaction model using kinetic measurements on hydrous pyrolysis residues[J]. Organic Geochemistry, 1995, 23(10): 931-939.
[18] 陈建平, 赵文智, 王招明, 等. 海相干酪根天然气生成成熟度上限与生气潜力极限探讨: 以塔里木盆地研究为例[J]. 科学通报, 2007, 52(S1): 95-99.
CHEN Jianping, ZHAO Wenzhi, WANG Zhaoming, et al.The upper maturity limit and potential of gas generation: A case study on marine kerogen of Tarim Basin[J]. Chinese Science Bulletin, 2007, 52(S1): 95-99.
[19] 谢增业, 李志生, 魏国齐, 等. 腐泥型干酪根热降解成气潜力及裂解气判识的实验研究[J]. 天然气地球科学, 2016, 27(6): 1057-1064.
XIE Zengye, LI Zhisheng, WEI Guoqi, et al.Experimental research on the potential of sapropelic kerogen cracking gas and discrimination of oil cracking gas[J]. Natural Gas Geoscience, 2016, 27(6): 1057-1064.
[20] JARVIE D M.Unconventional shale-gas systems: The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.
[21] 李永新, 王红军, 王兆云. 影响烃源岩中分散液态烃滞留数量因素研究[J]. 石油实验地质, 2010, 32(6): 588-591.
LI Yongxin, WANG Hongjun, WANG Zhaoyun.Simulation of influential factors of dispersive resoluble organic materials resident in source rocks[J]. Petroleum Geology and Experiment, 2010, 32(6): 588-591.
[22] 姜兰兰, 潘长春, 刘金钟. 矿物对原油裂解影响的实验研究[J]. 地球化学, 2009, 38(2): 165-173.
JIANG Lanlan, PAN Changchun, LIU Jinzhong.Experimental study on effects of minerals on oil cracking[J]. Geochimica, 2009, 38(2): 165-173.
[23] 何坤, 张水昌, 米敬奎. 原油裂解的动力学及控制因素研究[J]. 天然气地球科学, 2011, 22(2): 211-218.
HE Kun, ZHANG Shuichang, MI Jingkui.Research on the kinetics and controlling factors for oil cracking[J]. Natural Gas Geoscience, 2011, 22(2): 211-218.
[24] 赵文智, 王兆云, 张水昌. 不同地质环境下原油裂解生气条件[J]. 中国科学: 地球科学, 2007, 37(增刊Ⅱ): 63-68.
ZHAO Wenzhi, WANG Zhaoyun, ZHANG Shuichang.Crude oil cracking conditions under different geological conditions[J]. SCIENCE CHINA Earth Sciences, 2007, 37(Supp. Ⅱ): 63-68.
[25] 张水昌, 胡国艺, 米敬奎, 等. 三种成因天然气生成时限与生成量及其对深部油气资源预测的影响[J]. 石油学报, 2013, 34(S1): 41-50.
ZHANG Shuichang, HU Guoyi, MI Jingkui, et al.Time-limit and yield of natural gas generation from different origins and their effects on forecast of deep oil and gas resources[J]. Acta Petrolei Sinica, 2013, 34(S1): 41-50.
[26] 赵文智, 王兆云, 王红军, 等. 不同赋存状态油裂解条件及油裂解型气源灶的正演和反演研究[J]. 中国地质, 2006, 33(5): 59-61.
ZHAO Wenzhi, WANG Zhaoyun, WANG Hongjun, et al.Cracking conditions of oils existing in different modes of occurrence and forward and backward inference of gas source rock kitchen of oil cracking type[J]. Geology in China, 2006, 33(5): 59-61.
[27] 陈中红, 张守春, 查明. 压力对原油裂解成气影响的对比模拟实验[J]. 中国石油大学学报(自然科学版), 2012, 36(6): 19-25.
CHEN Zhonghong, ZHANG Shouchun, ZHA Ming.Comparative simulation experiments regarding influence of pressure on crude oil cracking into gas[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(6): 19-25.
[28] 帅燕华, 张水昌, 罗攀. 地层水促进原油裂解成气的模拟实验证据[J]. 科学通报, 2012, 57(30): 2857-2863.
SHUAI Yanhua, ZHANG Shuichang, LUO Pan.Experimental evidence for formation water promoting crude oil cracking to gas[J]. Chinese Science Bulletin, 2012, 57(30): 2857-2863.
[29] 张元, 吴晋沪, 张东柯. 乙烷在煤焦及石英砂床层上的裂解实验[J]. 石油化工, 2008, 37(8): 770-775.
ZHANG Yuan, WU Jinhu, ZHANG Dongke.Cracking of ethane in coal char bed and quartz sand bed[J]. Petrochemical Technology, 2008, 37(8): 770-775.
[30] 李华, 张兆斌. 热裂解链引发-终止反应的计算: C-H键的断裂-形成[J]. 石油化工, 2006, 35(7): 643-648.
LI Hua, ZHANG Zhaobin.Calculation for chain initiation- termination reactions in thermal cracking cleavage-formation of C-H bond[J]. Petrochemical Technology, 2006, 35(7): 643-648.
[31] 张红梅, 张晗伟, 顾萍萍, 等. 丙烷热裂解反应机理的分子模拟[J]. 石油学报(石油加工), 2012, 28(6): 146-150.
ZHANG Hongmei, ZHANG Hanwei, GU Pingping, et al.Molecular simulation of propane pyrolysis reaction[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2012, 28(6): 146-150.
[32] 倪力军, 张立国, 倪进方, 等.链烷烃热裂解过程结构动力学模型与模拟[J]. 化工学报, 1995, 46(5): 562-570.
NI Lijun, ZHANG Liguo, NI Jinfang, et al.Structural kinetic model of pyrolysis process of paraffins and its simulation[J]. Journal of Chemical Industry and Engineering (China), 1995, 46(5): 562-570.
[33] 郝玉兰, 张红梅, 张晗伟, 等. 丁烷热裂解反应机理的分子模拟[J]. 石油学报(石油化工), 2008, 37(8): 770-775.
HAO Yulan, ZHANG Hongmei, ZHANG Hanwei, et al.Molecular simulation pyrolysis mechanism of butane[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2008, 37(8): 770-775.
文章导航

/