石油工程

变内径钻柱中微波传输衰减规律

  • 夏文鹤 ,
  • 孟英峰 ,
  • 唐波 ,
  • 官文婷
展开
  • 1. “油气藏地质及开发工程”国家重点实验室 西南石油大学,成都 610500;
    2. 西南石油大学电气信息学院,成都 610500;
    3. 中国石化胜利石油工程有限公司钻井工艺研究院,山东东营 257017;
    4. 中国石油西南油气田公司工程技术研究院,成都 610050
夏文鹤(1978-),男,四川成都人,博士,西南石油大学电气信息学院副教授,主要从事气体钻井井下随钻测量方面的研究工作。地址:四川省成都市新都区新都大道8号,西南石油大学电气信息学院,邮政编码:610500。E-mail:swpuxwh@swpu.edu.cn

收稿日期: 2017-12-10

  修回日期: 2018-04-22

  网络出版日期: 2018-04-03

基金资助

“十三五”国家科技重大专项(2016ZX05021-003-003HZ)

Attenuation of microwave transmission in a diameter-variable drill string bore

  • XIA Wenhe ,
  • MENG Yingfeng ,
  • TANG Bo ,
  • GUAN Wenting
Expand
  • 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. School of Electrical and Information Engineering, Southwest Petroleum University, Chengdu 610500, China;
    3. Drilling Technology Research Institute of Shengli Petroleum Engineering Corporation Limited, Sinopec, Dongying 257017, China;
    4. Engineering Technology Research Institute, PetroChina Southwest Oil & Gasfield Company, Chengdu 610050, China;

Received date: 2017-12-10

  Revised date: 2018-04-22

  Online published: 2018-04-03

摘要

为确定钻柱内孔微波传输的最佳工作频点,获取微波信道的衰减规律及有效传输距离,将钻柱内孔视为超长不规则有耗圆波导,采用电磁波耦合理论计算了微波传输最佳工作频点,分析了波导中的微波模式,采用微波传输等效电路法建立了信道模型及信号衰减规律模型。针对超长钻柱,提出单位长度功率衰减系数从而对有效传输距离进行简化分析。研究表明,139.7 mm(5.5 in)和127.0 mm(5 in)API标准钻杆最佳工作频点分别为2.04 GHz和2.61 GHz,钻柱内孔沿轴向存在多个内径渐变段和突变点,微波传输存在大量反射过程,信道的阻抗变化是影响传输性能的主要因素。室内及现场测试结果表明,建立的微波传输衰减规律模型计算结果准确,可用于微波传输随钻监测系统的设计。图5表4参18

本文引用格式

夏文鹤 , 孟英峰 , 唐波 , 官文婷 . 变内径钻柱中微波传输衰减规律[J]. 石油勘探与开发, 2018 , 45(3) : 500 -506 . DOI: 10.11698/PED.2018.03.15

Abstract

With the drill string hole being regarded as an ultra-long irregular lossy cylindrical waveguide, the optimal frequency point for microwave transmission was calculated according to the electromagnetic wave coupling theory, the attenuation law and efficient transmission distance of microwave channel were obtained and the microwave mode in the waveguide was analyzed. Furthermore, the channel model and signal attenuation model were established by the microwave transmission equivalent circuit method. The power attenuation coefficient per unit of length was proposed to simplify the analysis on effective transmission distance for the ultra-long drill string. The optimal frequency points of 139.7 mm (5.5 in) and 127 mm (5 in) API drill pipes are 2.04 GHz and 2.61 GHz, respectively, and there are several inner diameter varying sections and break points in the drill string hole along the axial direction. The microwave transmission suffers a lot of reflections. The channel impedance change is a key factor affecting the transmission quality. The lab and field tests reveal that the attenuation model established in this paper is accurate, and it is helpful for guiding the design of microwave transmission measurement while drilling system.

参考文献

[1] 李皋, 李诚, 孟英峰, 等. 气体钻井随钻安全风险识别与监控[J]. 天然气工业, 2015, 35(7): 66-72.
LI Gao, LI Cheng, MENG Yingfeng, et al.While-drilling safety risk identification and monitoring in air drilling[J]. Natural Gas Industry, 2015, 35(7): 66-72.
[2] CHEN W Y, FANG B, WANG Y.MWD drilling mud signal de-noising and signal extraction research based on the pulse-code information[C]//Proceedings of the 2010 International Conference on Wavelet Analysis and Pattern Recognition. Qingdao: IEEE, 2010.
[3] LI W, NIE Z P.Wireless transmission of MWD and LWD signal based on guidance of metal pipes and relay of transceivers[J]. IEEE Transactions on Geosciences and Remote Sensing, 2016, 54(8): 4855-4866.
[4] DAI J, LIU Q H.Efficient computation of electromagnetic waves in anisotropic orthogonal-plano-cylindrically layered media using the improved numerical mode matching method[J]. IEEE Transactions on Antennas & Propagation, 2015, 63(8): 3569-3578.
[5] 杜睿攀. 随钻测量数据的井下无线电磁传输系统设计研究[D]. 西安: 西安石油大学, 2013.
DU Ruipan.Design and research on down-hole wireless electromagnetic transmission system of measurement-while-drilling (MWD) data[D]. Xi’an: Xi’an Shiyou University, 2013.
[6] 邵春. 基于小波提高EM-MWD接收信号识别精度[D]. 北京: 中国地质大学(北京), 2017.
SHAO Chun.Improve recognition accuracy of EM-MWD received signal based on wavelet[D]. Beijing: China University of Geosciences (Beijing), 2017.
[7] HUSSAIN S, HUELVAN Y, ADAMS W.Measurement while drilling, logging while drilling, and rotary steerable systems performance, benefits, and challenges in managed pressure drilling and underbalanced drilling[R]. SPE 169220-MS, 2014.
[8] 孟晓峰, 陈一健, 周静, 等. 钻杆中微波传输特性的分析[J]. 北京师范大学学报(自然科学版), 2010, 46(2): 151-155.
MENG Xiaofeng, CHEN Yijian, ZHOU Jing, et al.Analyzing microwave propagation properties in drilling stem[J]. Journal of Beijing Normal University (Natural Science), 2010, 46(2): 151-155.
[9] KONG J A.Electromagnetic wave theory[M]. Beijing: Publishing House of Electronics Industry, 2003: 470-476.
[10] 王玉龙. 利用微波解除输气管道中天然气水合物堵塞的可行性研究[D]. 西安: 西安石油大学, 2013.
WANG Yulong.Feasibility study of natural gas hydrate in gas pipeline unplugging by using microwave[D]. Xi’an: Xi’an Shiyou University, 2013.
[11] 赵克玉, 许福永. 微波原理与技术[M]. 北京: 高等教育出版社, 2006: 80-93, 240-289.
ZHAO Keyu, XU Fuyong.Microwave theory and technology[M]. Beijing: Higher Education Press, 2006: 80-93, 240-289.
[12] 李宁平, 鄢扬, 袁学松. 非线性渐变圆波导的数值分析[J]. 真空电子技术, 2009(1): 44-47.
LI Ningping, YAN Yang, YUAN Xuesong.Numerical analysis of nonlinear circular wave guide taper[J]. Vacuum Electronics, 2009(1): 44-47.
[13] 陶亚雄. 现代通信原理[M]. 北京: 电子工业出版社, 2013: 8-13.
TAO Yaxiong.Modern communication principle[M]. Beijing: Electronics and Industry Press, 2013: 8-13.
[14] 于新华. 高功率毫米波模式变换和传输关键技术的研究[D]. 成都: 电子科技大学, 2010: 14-17.
YU Xinhua.Study of key techniques on high-power millimeter wave mode conversion and transmission[D]. Chengdu: University of Electronic Science and Technology of China, 2010: 14-17.
[15] 田昊展, 徐润章, 肖璐瑶, 等. 石油钻杆与套管间空气层中微波传输模式的分析[J]. 北京师范大学学报(自然科学版), 2012, 48(6): 613-616.
TIAN Haozhan, XU Runzhang, XIAO Luyao, et al.Analyzing microwave propagation in air between drilling stem and its cover tube[J]. Journal of Beijing Normal University (Natural Science), 2012, 48(6): 613-616.
[16] 李冰玉, 张申. 隧道内微波多径传播特性的仿真[J]. 微波学报, 2003, 19(4): 37-41.
LI Bingyu, ZHANG Shen.The simulation of multipath propagation characteristic of microwave in a tunnel[J]. Journal of Microwaves, 2003, 19(4): 37-41.
[17] 巨琰. 无线超宽带信道模型的分析与仿真[D]. 南京: 南京邮电大学, 2013: 42-43.
JU Yan.Modeling and simulation of UWB wireless communication channel[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2013: 42-43.
[18] XIA W H, MENG Y F.Study on multipath channels model of microwave propagation in a drill pipe[J]. Journal of Electromagnetic Waves and Applications, 2018, 32(2): 129-137.
文章导航

/