油气勘探

海相页岩有机质炭化的热成熟度下限及勘探风险

  • 王玉满 ,
  • 李新景 ,
  • 陈波 ,
  • 吴伟 ,
  • 董大忠 ,
  • 张鉴 ,
  • 韩京 ,
  • 马杰 ,
  • 代兵 ,
  • 王浩 ,
  • 蒋珊
展开
  • 1. 中国石油勘探开发研究院,北京 100083;
    2. 长江大学,武汉 430100;
    3. 中国石油西南油气田公司勘探开发研究院,成都 510051
王玉满(1968-),男,湖北荆门人,博士,中国石油勘探开发研究院高级工程师,主要从事沉积储集层与非常规油气地质研究。地址:北京市海淀区学院路20号,中国石油勘探开发研究院石油地质实验研究中心,邮政编码:100083。E-mail:wangyuman@petrochina.com.cn

收稿日期: 2017-12-06

  修回日期: 2018-04-17

  网络出版日期: 2018-03-29

基金资助

中国科学院A类战略性先导科技专项(XDA14010101);国家科技重大专项(2017ZX05035001);中国石油勘探与生产分公司页岩气资源评价与战略选区课题(kt2017-10-02)

Lower limit of thermal maturity for the carbonization of organic matter in marine shale and its exploration risk

  • WANG Yuman ,
  • LI Xinjing ,
  • CHEN Bo ,
  • WU Wei ,
  • DONG Dazhong ,
  • ZHANG Jian ,
  • HAN Jing ,
  • MA Jie ,
  • DAI Bing ,
  • WANG Hao ,
  • JIANG Shan
Expand
  • 1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    2. Yangtze University, Wuhan 430100, China;
    3. Exploration and Development Research Institute, Southwest Oil & GasField Company, PetroChina, Chengdu 610051, China;

Received date: 2017-12-06

  Revised date: 2018-04-17

  Online published: 2018-03-29

摘要

以四川盆地及周缘志留系龙马溪组钻井资料为基础,利用激光拉曼、电阻率测井和物性分析等页岩源储表征技术,开展了高过成熟海相页岩有机质炭化的Ro值下限和基本特征研究。研究认为:①海相页岩Ⅰ—Ⅱ1型有机质炭化的Ro值下限为3.5%。在Ro值小于3.4%阶段,一般不会出现有机质炭化现象;在Ro值为3.4%~3.5%阶段,可能出现有机质弱炭化与未炭化两种情况并存;在Ro值大于3.5%阶段,出现有机质炭化的可能性很大。②进入炭化阶段的富有机质页岩具有电阻率测井曲线普遍呈“细脖子型”(低—超低电阻率响应)、激光拉曼谱出现石墨峰、物性差(基质孔隙度仅为正常水平一半以下)等3个基本特征。③有机质炭化阶段导致页岩源储品质的损害巨大,主要表现为页岩的生烃能力衰竭、有机质孔隙和黏土矿物晶间孔的大量减少甚至消失、对天然气的吸附能力降低等。由此认为,Ⅰ—Ⅱ1型固体有机质炭化的Ro值下限应成为古老海相地层页岩气勘探不可逾越的红线;在选区评价工作中,需加强低—超低电阻率富有机质页岩的有效性评价,排除由有机质炭化造成的高风险区;在勘探开发过程中,对钻遇的低—超低电阻率目的层应高度重视有机质炭化评价,及时调整部署方案。图7表3参28

本文引用格式

王玉满 , 李新景 , 陈波 , 吴伟 , 董大忠 , 张鉴 , 韩京 , 马杰 , 代兵 , 王浩 , 蒋珊 . 海相页岩有机质炭化的热成熟度下限及勘探风险[J]. 石油勘探与开发, 2018 , 45(3) : 385 -395 . DOI: 10.11698/PED.2018.03.03

Abstract

Based on the drilling data of the Silurian Longmaxi Formation in the Sichuan Basin and periphery, SW China, the Ro lower limits and essential features of the carbonization of organic matter in over-high maturity marine shale were examined using laser Raman, electrical and physical property characterization techniques. Three preliminary conclusions are drawn: (1) The lower limit of Ro for the carbonization of Type I-II1 organic matter in marine shale is 3.5%; when the Ro is less than 3.4%, carbonization of organic matter won’t happen in general; when the Ro ranges from 3.4% to 3.5%, non-carbonization and weak carbonization of organic matter may coexist; when the Ro is higher than 3.5%, the carbonization of organic matter is highly likely to take place. (2) Organic-rich shale entering carbonization phase have three basic characteristics: log resistivity curve showing a general “slender neck” with low-ultralow resistance response, Raman spectra showing a higher graphite peak, and poor physical property (with matrix porosity of only less than 1/2 of the normal level). (3) The quality damage of shale reservoir caused by the carbonization of organic matter is almost fatal, which primarily manifests in depletion of hydrocarbon generation capacity, reduction or disappearance of organic pores and intercrystalline pores of clay minerals, and drop of adsorption capacity to natural gas. Therefore, the lower limit of Ro for the carbonization of Type I-II1 organic matter should be regarded as the theoretically impassable red line of shale gas exploration in the ancient marine shale formations. The organic-rich shale with low-ultralow resistance should be evaluated effectively in area selection to exclude the high risk areas caused by the carbonization of organic matter. The target organic-rich shale layers with low-ultralow resistance drilled during exploration and development should be evaluated on carbonization level of organic matter, and the deployment plan should be adjusted according to the evaluation results in time.

参考文献

[1] 赵文智, 李建忠, 杨涛, 等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发, 2016, 43(4): 499-510.
ZHAO Wenzhi, LI Jianzhong, YANG Tao, et al.Geological difference and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development, 2016, 43(4): 499-510.
[2] 刘德汉, 肖贤明, 田辉, 等. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J]. 科学通报, 2013, 58(13): 1228-1241.
LIU D H, XIAO X M, TIAN H, et al.Sample maturation calculated using Raman spectroscopic parameters for solid organics: Methodology and geological applications[J]. Chinese Science Bulletin, 2013, 58(13): 1228-1241.
[3] SPOÈTL C, HOUSEKNECHT D W, JAQUES R C. Kerogen maturation and incipient graphitization of hydrocarbon source rocks in the Arkoma Basin, Oklahoma and Arkansas: A combined petrographic and Raman spectrometric study[J]. Organic Geochemistry, 1998, 28(9/10): 535-542.
[4] 王玉满, 董大忠, 程相志, 等. 海相页岩有机质碳化的电性证据及其地质意义: 以四川盆地南部地区下寒武统筇竹寺组页岩为例[J]. 天然气工业, 2014, 34(8): 1-7.
WANG Yuman, DONG Dazhong, CHENG Xiangzhi, et al.Electric property evidences of the carbonification of organic matters in marine shales and its geologic significance: A case study of the Lower Cambrian Qiongzhusi Shale in the southern Sichuan Basin[J]. Natural Gas Industry, 2014, 34(8): 1-7.
[5] 肖贤明, 王茂林, 魏强, 等. 中国南方下古生界页岩气远景区评价[J]. 天然气地球科学, 2015, 26(8): 1433-1445.
XIAO Xianming, WANG Maolin, WEI Qiang, et al.Evaluation of Lower Paleozoic shale with shale gas prospect in south China[J]. Natural Gas Geoscience, 2015, 26(8): 1433-1445.
[6] 杨小兵, 张树东, 张志刚, 等. 低阻页岩气储层的测井解释评价[J]. 成都理工大学学报(自然科学版), 2015, 42(6): 692-699.
YANG Xiaobing, ZHANG Shudong, ZHANG Zhigang, et al.Logging interpretation and evaluation of low resistivity shale gas reservoirs[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2015, 42(6): 692-699.
[7] 黄金亮, 邹才能, 李建忠, 等. 川南下寒武统筇竹寺组页岩气形成条件及资源潜力[J]. 石油勘探与开发, 2012, 39(1): 69-75.
HUANG Jinliang, ZOU Caineng, LI Jianzhong, et al.Shale gas generation and potential of the Lower Cambrian Qiongzhusi Formation in Southern Sichuan Basin, China[J]. Petroleum Exploration and Development, 2012, 39(1): 69-75.
[8] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6): 689-701.
ZOU Caineng, DONG Dazhong, WANG Yuman, et al.Shale gas in China: Characteristics, challenges and prospects(Ⅰ)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701.
[9] 郭旭升, 胡东风, 李宇平, 等. 涪陵页岩气田富集高产主控地质因素[J]. 石油勘探与开发, 2017, 44(4): 481-491.
GUO Xusheng, HU Dongfeng, LI Yuping, et al.Geological factors controlling shale gas enrichment and high production in Fuling shale gas field[J]. Petroleum Exploration and Development, 2017, 44(4): 481-491.
[10] 郭彤楼. 中国式页岩气关键地质问题与成藏富集主控因素[J]. 石油勘探与开发, 2016, 43(3): 317-326.
GUO Tonglou.Key geological issues and main controls on accumulation and enrichment of Chinese shale gas[J]. Petroleum Exploration and Development, 2016, 43(3): 317-326.
[11] 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36.
GUO Tonglou, ZHANG Hanrong.Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36
[12] 王玉满, 王宏坤, 张晨晨, 等. 四川盆地南部深层五峰组—龙马溪组裂缝孔隙评价[J]. 石油勘探与开发, 2017, 44(4): 531-539.
WANG Yuman, WANG Hongkun, ZHANG Chenchen, et al.Fracture pore evaluation of the Upper Ordovician Wufeng to Lower Silurian Longmaxi Formations in southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(4): 531-539.
[13] 张晨晨, 王玉满, 董大忠, 等. 四川盆地五峰组—龙马溪组页岩脆性评价与“甜点层”预测[J]. 天然气工业, 2016, 36(9): 51-60.
ZHANG Chenchen, WANG Yuman, DONG Dazhong, et al.Evaluation of the Wufeng-Longmaxi shale brittleness and prediction of “sweet spot layers” in the Sichuan Basin[J]. Natural Gas Industry, 2016, 36(9): 51-60.
[14] 梁峰, 拜文华, 邹才能, 等. 渝东北地区巫溪2井页岩气富集模式及勘探意义[J]. 石油勘探与开发, 2016, 43(3): 350-358.
LIANG Feng, BAI Wenhua, ZOU Caineng, et al.Shale gas enrichment pattern and exploration significance of Well Wuxi-2 in northeast Chongqing, NE Sichuan Basin[J]. Petroleum Exploration and Development, 2016, 43(3): 350-358.
[15] 王玉满, 黄金亮, 李新景, 等. 四川盆地下志留统龙马溪组页岩裂缝孔隙定量表征[J]. 天然气工业, 2015, 35(9): 8-15.
WANG Yuman, HUANG Jinliang, LI Xinjing, et al.Quantitative characterization of fractures and pores in shale beds of the Lower Silurian, Longmaxi Formation, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(9): 8-15.
[16] WILKINS R W T, BOUDOU R, SHERWOOD N, et al. Thermal maturity evaluation from inertinites by Raman spectroscopy: The ‘RaMM’ technique[J]. International Journal of Coal Geology, 2014(128/129):143-152.
[17] ZHOU Q, XIAO X M, PAN L, et al.The relationship between micro-Raman spectral parameters and reflectance of solid bitumen[J]. International Journal of Coal Geology, 2014, 121(1): 19-25.
[18] ZHAO H, GIVENS N B, CURTIS B.Thermal maturity of the Barnett Shale determined from well-log analysis[J]. AAPG Bulletin, 2007, 91(4): 535-549.
[19] LECOMPTE B,FRANQUET J A,JACOBI D, et al.Evaluation of Haynesville shale vertical well completions with a mineralogy based approach to reservoir geomechanics[R]. SPE 124227, 2009.
[20] KINLEY T J, COOK L W, BREYER J A, et al.Hydrocarbon potential of the Barnett Shale (Mississippian), Delaware Basin, west Texas and southeastern New Mexico[J]. AAPG Bulletin , 2008, 92(8): 967-991.
[21] 王玉满, 董大忠, 杨桦, 等. 川南下志留统龙马溪组页岩储集空间定量表征[J]. 中国科学: 地球科学, 2014, 44(6): 1348-1356.
WANG Yuman, DONG Dazhong, YANG Hua, et al.Quantitative characterization of reservoir space in the Lower Silurian Longmaxi Shale, southern Sichuan, China[J]. SCIENCE CHINA Earth Sciences, 2014, 57(2): 313-322.
[22] CLARKSON C R, SOLANO N, BUSTIN R M, et al.Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J]. Fuel, 2013, 103(1): 606-616.
[23] ROSS D J K, BUSTIN R M. Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin: Application of an integrated formation evaluation[J]. AAPG Bulletin, 2008, 92(1): 87-125.
[24] ROSS D J K, BUSTIN R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927.
[25] MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al.Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200.
[26] JACOBI D, HUGHES B, BREIG J, et al.Effective geochemical and geomechanical characterization of shale gas reservoirs from the wellbore environment: Caney and the Woodford shale[R]. SPE 124231, 2009.
[27] 王玉满, 李新景, 董大忠, 等. 海相页岩裂缝孔隙发育机制及地质意义[J]. 天然气地球科学, 2016, 27(9): 1602-1610.
WANG Yuman, LI Xinjing, DONG Dazhong, et al.Development mechanism of fracture pores in marine shale and its geological significance[J]. Natural Gas Geoscience, 2016, 27(9): 1602-1610.
[28] 魏祥峰, 李宇平, 魏志红, 等. 保存条件对四川盆地及周缘海相页岩气富集高产的影响机制[J]. 石油实验地质, 2017, 39(2): 147-153.
WEI Xiangfeng, LI Yuping, WEI Zhihong, et al.Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment , 2017, 39(2): 147-153.
文章导航

/