综合研究

四川盆地巫溪2井龙马溪组含气页岩细粒沉积纹层特征

  • 施振生 ,
  • 邱振 ,
  • 董大忠 ,
  • 卢斌 ,
  • 梁萍萍 ,
  • 张梦琪
展开
  • 1. 中国石油勘探开发研究院,河北廊坊 065007;
    2. 国家能源页岩气研发(实验)中心,河北廊坊 065007
施振生(1976-),男,安徽枞阳人,博士,中国石油勘探开发研究院高级工程师,主要从事细粒沉积学地质理论技术研究。地址:河北省廊坊市万庄镇44号信箱,中国石油勘探开发研究院非常规研究所,邮政编码:065007。E-mail:shizs69@petrochina.com.cn

收稿日期: 2017-10-25

  修回日期: 2018-01-03

  网络出版日期: 2018-03-22

基金资助

国家自然科学基金“扬子地区奥陶纪—志留纪转折期火山灰沉积与有机质富集关系探讨”(41602119); 国家自然科学基金“晚三叠世四川盆地不同类型三角洲内部构型及成因模式”(41572079)

Laminae characteristics of gas-bearing shale fine-grained sediment of the Silurian Longmaxi Formation of Well Wuxi 2 in Sichuan Basin, SW China

  • SHI Zhensheng ,
  • QIU Zhen ,
  • DONG Dazhong ,
  • LU Bin ,
  • LIANG Pingping ,
  • ZHANG Mengqi
Expand
  • 1. PetroChina Research Institute of Petroleum Exploration and Development, Langfang 065007, China;
    2. National Energy Shale Gas R&D (Experiment) Center, Langfang 065007, China;

Received date: 2017-10-25

  Revised date: 2018-01-03

  Online published: 2018-03-22

摘要

基于多种分析测试资料,以四川盆地巫溪2井志留系龙马溪组为例,确定其含气页岩纹层组成、结构、构造及纹层类型。巫溪2井志留系龙马溪组共发育富有机质、含有机质、黏土质和粉砂质4类纹层,形成2类纹层组和5类层。随深度变浅,4类纹层TOC值依次降低、黏土矿物含量增加、脆性矿物含量轻微降低,这与沉积时期陆源碎屑供给逐渐增加、古水动力增强、水体含氧量增加有关。志留系龙马溪组一段1—3小层以富有机质纹层、富有机质+含有机质纹层组及富有机质层为主,沉积期水体缺氧,古水动力弱,龙马溪组一段4小层富有机质纹层、含有机质纹层和黏土质纹层均发育,水体含氧量增加,古水动力增强,龙马溪组一段1—3小层为目前页岩气勘探开发“甜点”井段及最佳钻井目标层位。图5表3参43

本文引用格式

施振生 , 邱振 , 董大忠 , 卢斌 , 梁萍萍 , 张梦琪 . 四川盆地巫溪2井龙马溪组含气页岩细粒沉积纹层特征[J]. 石油勘探与开发, 2018 , 45(2) : 339 -348 . DOI: 10.11698/PED.2018.02.18

Abstract

Based on various test data, the composition, texture, structure and lamina types of gas-bearing shale were determined based on Well Wuxi 2 of the Silurian Longmaxi Formation in the Sichuan Basin. Four types of laminae, namely organic-rich laminae, organic-bearing laminae, clay laminae and silty laminae, are developed in the Longmaxi Formation of Well Wuxi 2, and they form 2 kinds of lamina set and 5 kinds of beds. Because of increasing supply of terrigenous clastics and enhancing hydrodynamics and associated oxygen levels, the TOC content and brittle mineral reduces and clay mineral content increases gradually as the depth becomes shallow. Organic-rich laminae, organic-rich + organic-bearing lamina set and organic-rich bed dominate the beds 1-3 of Member 1 of the Longmaxi Formation, suggesting anoxic and weak water hydraulic depositional setting. Bed 4 is dominated by organic-rich laminae, organic-bearing laminae and silty laminae, suggesting increased oxygen-bearing and hydraulic level. Beds 1-3 are the best interval and drilling target of shale gas exploration and development.

参考文献

[1] 蒋廷学, 卞晓冰, 王海涛, 等. 深层页岩气水平井体积压裂技术[J]. 天然气工业, 2017, 37(1): 90-96.
JIANG Tingxue, BIAN Xiaobing, WANG Haitao, et al.Volume fracturing of deep shale gas horizontal wells[J]. Natural Gas Industry, 2017, 37(1): 90-96.
[2] 衡帅, 杨春和, 郭印同, 等. 层理对页岩水力裂缝扩展的影响研究[J]. 岩石力学与工程学报, 2015, 34(2): 228-237.
HENG Shuai, YANG Chunhe, GUO Yintong, et al.Influence of bedding planes on hydraulic fracture propagation in shale formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 228-237.
[3] 许丹, 胡瑞林, 高玮, 等. 页岩纹层结构对水力裂缝扩展规律的影响[J]. 石油勘探与开发, 2015, 42(4): 523-528.
XU Dan, HU Ruiling, GAO Wei, et al.Effects of laminated structure on hydraulic fracture propagation in shale[J]. Petroleum Exploration and Development, 2015, 42(4): 523-528.
[4] LAZAR O R, BOHACS K M, MACQUAKER J H S, et al. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines[J]. Journal of Sedimentary Research, 2015, 85: 230-246.
[5] 王冠民. 济阳坳陷古近系页岩的纹层组合及成因分类[J]. 吉林大学学报(地球科学版), 2012, 42(3): 666-671.
WANG Guanmin.Laminae combination and genetic classification of Eogene shale in Jiyang Depression[J]. Journal of Jiling University (Earth Science Edition), 2012, 42(3): 666-671.
[6] 姜在兴, 梁超, 吴靖, 等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报, 2013, 34(6): 1031-1039.
JIANG Zaixing, LIANG Chao, WU Jing, et al.Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.
[7] 陈世悦, 张顺, 王永诗, 等. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及储集层特征[J]. 石油勘探与开发, 2016, 43(2): 198-208.
CHEN Shiyue, ZHANG Shun, WANG Yongshi, et al.Lithofacies types and reservoirs of Paleogene fine-grained sedimentary rocks in Dongying Sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(2): 198-208.
[8] 刘传联, 徐金鲤, 汪品先. 藻类勃发:湖相油源岩形成的一种重要机制[J]. 地质论评, 2001, 47(2): 207-210.
LIU Chuanlian, XU Jinli, WANG Pinxian.Algal blooms: The primary mechanism in the formation of lacustrine petroleum source rocks[J]. Geological Review, 2001, 47(2): 207-210.
[9] 王慧中, 梅洪明. 东营凹陷沙三下亚段油页岩中古湖泊学信息[J]. 同济大学学报, 1998, 26(3): 315-319.
WANG Huizhong, MEI Hongming.Paleolimnological information from the oil shale in the Lower part of Sha 3 Formation, in Dongying Depression[J]. Journal of Tongji University, 1998, 26(3): 315-319.
[10] 李婷婷, 朱如凯, 白斌, 等. 酒泉盆地青西凹陷下沟组湖相细粒沉积岩纹层特征及研究意义[J]. 中国石油勘探, 2015, 20(1): 38-47.
LI Tingting, ZHU Rukai, BAI Bin, et al.Characteristics and research significance of fine lacustrine sedimentary rock laminations of Xiagou Formation in Qingxi Depression of Jiuquan Basin[J]. China Petroleum Exploration, 2015, 20(1): 38-47.
[11] MACQUAKER J H, KELLER M A, DAVIES S J.Algal blooms and “marine snow”: Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments[J]. Journal of Sedimentary Research, 2010, 80: 934-942.
[12] ANDERSON R Y, DEAN W E.Lacustrine varve formation through time[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988, 62(1): 215-235.
[13] CAMPBELL C V.Lamina, laminaset, bed and bedset[J]. Sedimentology, 1967, 8: 7-26.
[14] 赵圣贤, 杨跃明, 张鉴, 等. 四川盆地下志留统龙马溪组页岩小层划分与储层精细对比[J]. 天然气地球科学, 2016, 27(3): 470-487.
ZHANG Shengxian, YANG Yueming, ZHANG Jian, et al.Micro-layers division and fine reservoirs contrast of Lower Silurian Longmaxi Formation shale, Sichuan Basin, SW China[J]. Natural Gas Geoscience, 2016, 27(3): 470-487.
[15] 周名魁, 王汝植, 李志明, 等. 中国南方奥陶—志留纪岩相古地理与成矿作用[M]. 北京: 地质出版社, 1993: 1-111.
ZHOU Mingkui, WANG Ruzhi, LI Zhiming, et al.Lithofacies paleography and mineralization of Ordovician and Silurian in South China[M]. Beijing: Geological Publishing House, 1993: 1-111.
[16] 梁峰, 拜文华, 邹才能, 等. 渝东北地区巫溪2井页岩气富集模式及勘探意义[J]. 石油勘探与开发, 2016, 43(3): 350-358.
LIANG Feng, BAI Wenhua, ZOU Caineng, et al.Shale enrichment pattern and exploration significance of Well Wuxi-2 in northeast Chongqing, NE Sichuan Basin[J]. Petroleum Exploration and Development, 2016, 43(3): 350-358.
[17] APLIN A C, MACQUAKER J H.Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059.
[18] MILLIKEN K L.A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks[J]. Journal of Sedimentary Research, 2014, 84(12): 1185-1199.
[19] SCHIEBER J, SOUTHARD J, THAISEN K.Accretion of mudstone beds from migrating floccule ripples[J]. Science, 2007, 318(5857): 1760-1763.
[20] SCHIEBER J, SOUTHARD J B, SCHIMMELMANN A.Lenticular shale fabrics resulting from intermittent erosion of water-rich muds: Interpreting the rock record in the light of recent flume experiments[J]. Journal of Sedimentary Research, 2010, 80(1): 119-128.
[21] SCHIEBER J.Experimental testing of the transport-durability of shale lithics and its implications for interpreting the rock record[J]. Sedimentary Geology, 2016, 331: 162-169.
[22] MACQUAKER J H, GAWTHORPE R L, TAYLOR K G, et al.Heterogeneity, stacking patterns and sequence stratigraphic interpretation in distal mudstone successions: Examples from the Kimmeridge Clay Formation, UK[J]. Journal of Sedimentary Research, 1998, 68(1): 163-186.
[23] SCHIEBER J.Mud re-distribution in epicontinental basins: Exploring likely processes[J]. Marine and Petroleum Geology, 2016, 71: 119-133.
[24] SCHIEBER J, SOUTHARD J B.Bedload transport of mud by floccule ripples: Direct observation of ripple migration processes and their implications[J]. Geology, 2009, 37(6): 483-486.
[25] SCHIEBER J, YAWAR Z.A new twist on mud deposition: Mud ripples in experiment and rock record[J]. The Sedimentary Record, 2009, 7(2): 4-8.
[26] CAMP W K, EGENHOFF S, SCHIEBER J, et al.A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks: Discussion[J]. Journal of Sedimentary Research, 2016, 86(1): 1-5.
[27] MACQUAKER J H, ADAMS A E.Maximizing information from fine-grained sedimentary rocks: An inclusive nomenclature for mudstones[J]. Journal of Sedimentary Research, 2003, 73: 735-744.
[28] EMEIS K C, WEISSERT H.Tethyan-Mediterranean organic carbon-rich sediments from Mesozoic black shales to sapropels[J]. Sedimentology, 2009, 56(1): 247-266.
[29] SCHIEBER J.Reverse engineering mother nature: Shale sedimentology from an experimental perspective[J]. Sedimentary Geology, 2011, 238(1/2): 1-22.
[30] MACQUAKER J H, BOHACS K M.On the accumulation of mud[J]. Science, 2007, 318(5857): 1734-1735.
[31] SCHIEBER J, SOUTHARD J B, KISSLING P, et al.Experimental deposition of carbonate mud from moving suspensions: Importance of flocculation and implications for modern and ancient carbonate mud deposition[J]. Journal of Sedimentary Research, 2013, 83(1): 1026-1032.
[32] WIGNALL P B, MACQUAKER J H, GAWTHORPE R L.Mudstone lithofacies in the Kimmeridge Clay Formation, Wessex Basin, southern England: Implications for the origin and controls of the distribution of mudstones: Discussion and reply[J]. Journal of Sedimentary Research, 1994, 64: 927-932.
[33] HAMMES U.Sequence stratigraphy and core facies of the Haynesville mudstone, East Texas[J]. Journal of Dermatology, 2009, 38(12): 1125-1129.
[34] FIGUEIREDO J J, HODGSON D M, FLINT S S, et al.Depositional environments and sequence stratigraphy of an exhumed Permian mudstone-dominated submarine slope succession, Karoo Basin, South Africa[J]. Journal of Sedimentary Research, 2010, 80(1): 97-118.
[35] BOHACS K M, LAZAR O R, DEMKO T M.Parasequence types in shelfal mudstone strata: Quantitative observations of lithofacies and stacking patterns, and conceptual link to modern depositional regimes[J]. Geology, 2014, 42(2): 131-134.
[36] TERWINDT J H, BREUSERS H N C. Experiments on the origin of flaser, lenticular and sand-clay alternating bedding[J]. Sedimentology, 1972, 19(1/2): 85-98.
[37] PLINT A G, MACQUAKER J H.Bedload transport of mud across a wide, storm-influenced ramp: Cenomanian-Turonian Kaskapau Formation, western Canada Foreland Basin[J]. Journal of Sedimentary Research, 2013, 83(12): 801-822.
[38] 邱振, 江增光, 董大忠, 等. 巫溪地区五峰组—龙马溪组页岩有机质沉积模式[J]. 中国矿业大学学报, 2017, 46(5): 1134-1143.
QIU Zhen, JIANG Zengguang, DONG Dazhong, et al.Organic matter enrichment model of the shale in Wufeng-Longmachi Formation of Wuxi area[J]. Journal of China University of Mining & Technology, 2017, 46(5): 1134-1143.
[39] 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653.
ZOU Caineng, DONG Dazhong, WANG Shejiao, et al.Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
[40] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6): 689-701.
ZOU Caineng, DONG Dazhong, WANG Yuman, et al.Shale gas in China: Characteristics, challenges and prospects (I)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701.
[41] 陈尚斌, 朱炎铭, 王红岩, 等. 中国页岩气研究现状与发展趋势[J]. 石油学报, 2010, 31(4): 689-694.
CHEN Shangbin, ZHU Yanming, WANG Hongyan, et al.Research status and trends of shale gas in China[J]. Acta Petrolei Sinica, 2010, 31(4): 689-694.
[42] 刘树根, 马文辛, JANSA L,等. 四川盆地东部地区下志留统龙马溪组页岩储层特征[J]. 岩石学报, 2011, 27(8): 2239-2252.
LIU Shugen, MA Wenxin, JANSA L, et al.Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, east Sichuan Basin, China[J]. Acta Petrologica Sinica, 2011, 27(8): 2239-2252.
[43] 邱振, 邹才能, 李建忠, 等. 非常规油气资源评价进展与未来展望[J]. 天然气地球科学, 2013, 24(2): 238-246.
QIU Zhen, ZOU Caineng, LI Jianzhong, et al.Unconventional petroleum resources assessment: Progress and future prospects[J]. Natural Gas Geoscience, 2013, 24(2): 238-246.
文章导航

/