油气勘探

常规-非常规天然气理论、技术及前景

  • 邹才能 ,
  • 杨智 ,
  • 何东博 ,
  • 位云生 ,
  • 李剑 ,
  • 贾爱林 ,
  • 陈建军 ,
  • 赵群 ,
  • 李易隆 ,
  • 李君 ,
  • 杨慎
展开
  • 中国石油勘探开发研究院,北京 100083
邹才能(1963-),男,重庆江北人,博士,中国科学院院士,主要从事非常规油气地质学、常规油气地质理论与实践、新能源发展战略等研究工作。地址:北京市海淀区学院路20号,中国石油勘探开发研究院院办,邮政编码:100083。E-mail: zcn@petrochina.com.cn

收稿日期: 2017-12-25

  修回日期: 2018-06-11

  网络出版日期: 2018-03-08

基金资助

国家科技重大专项(2016ZX05047,2016ZX05015); 国家基础研究发展计划(973)项目(2014CB239000)

Theory, technology and prospects of conventional and unconventional natural gas

  • ZOU Caineng ,
  • YANG Zhi ,
  • HE Dongbo ,
  • WEI Yunsheng ,
  • LI Jian ,
  • JIA Ailin ,
  • CHEN Jianjun ,
  • ZHAO Qun ,
  • LI Yilong ,
  • LI Jun ,
  • YANG Shen
Expand
  • Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China

Received date: 2017-12-25

  Revised date: 2018-06-11

  Online published: 2018-03-08

摘要

中国天然气进入跨越式发展的黄金时期,成为向清洁能源过渡不可逾越的桥梁。通过对国内外天然气发展现状、理论技术、潜力前景进行重点研究和阐述,结果表明:①全球天然气资源丰富,剩余探明可采储量186×1012 m3,储采比为52.4,具备长期加快发展的资源基础;②提出了常规-非常规天然气地质学内涵,其形成分布具有10条规律,天然气勘探地质形成以不同气源为核心的常规圈闭“单体型”大气田成藏理论、以不同岩类储集层为核心的非常规“连续型”甜点区聚集理论,天然气开发地质形成以常规“控制水侵”为核心的构造气藏开发理论、以“人工气藏”为核心的非常规天然气开发理论;③中国天然气地质资源量(不含天然气水合物)达210×1012 m3,整体探明率不足2%,天然气储产量将持续增长,预计2030年前年增探明地质储量约为(6 000~7 000)×108 m3,预计2030年常规、非常规气产量均有望达到1 000×108 m3左右,消费量需求可达5 500×108 m3,天然气对外依存度可能达到64%,2050年可能达到70%;④提出中国未来天然气发展应加大资源规模区勘探力度、提高非常规气开发效益、增强储气库调峰与LNG(液化天然气)规模建设等10条措施。图8表5参32

本文引用格式

邹才能 , 杨智 , 何东博 , 位云生 , 李剑 , 贾爱林 , 陈建军 , 赵群 , 李易隆 , 李君 , 杨慎 . 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发, 2018 , 45(4) : 575 -587 . DOI: 10.11698/PED.2018.04.04

Abstract

The development of natural gas in China has entered a golden and leap-forward stage, which is a necessary bridge to clean energy. This in-depth study on the status quo, theory, technology and prospect of natural gas development shows: (1) The global remaining proven recoverable reserves of natural gas are 186×1012 m3, and the reserves-production ratio is 52.4, indicating a solid resource base for long-term and rapid development. (2) Ten formation and distribution laws of conventional and unconventional natural gas reservoirs have been proposed. In terms of exploration geology, the theory of conventional “monolithic” giant gas fields with different gas sources, and an unconventional gas accumulation theory with continuous distribution of “sweet spots” in different lithologic reservoirs have been established; in terms of development geology, a development theory of conventional structural gas reservoirs is oriented to “controlling water intrusion”, while a development theory of unconventional gas is concentrated on artificial gas reservoirs. (3) With the geological resources of 210×1012 m3 (excluding hydrates) and the total proven rate of the resources less than 2% at present, the natural gas in China will see a constant increase in reserve and production; by 2030, the proven geological reserves of natural gas are expected to reach about (6 000-7 000)×108 m3, the production of conventional and unconventional natural gas each will reach about 1 000×108 m3, and the gas consumption will reach 5500×108 m3. The dependence on imported natural gas may be 64% by 2030, and 70% by 2050. (4) Ten measures for future development of natural gas have been proposed, including strengthening exploration in large-scale resource areas, increasing the development benefits of unconventional gas, and enhancing the peak adjusting capacity of gas storage and scale construction of liquified natural gas.

参考文献

[1] BP. Statistical review of world energy 2017[R]. London: BP, 2017.
[2] BP. Energy outlook: 2017 editon[R]. London: BP, 2017.
[3] IEA. International energy outlook 2017[EB/OL]. (2017-09-14)[2017- 12-20]. http://www.eia.gov/ieo.
[4] 侯启军, 朱兴珊, 王武. 提高天然气竞争力是优化中国能源结构的关键问题[J]. 国际石油经济, 2015, 6: 20-22.
HOU Qijun, ZHU Xingshan, WANG Wu.The importance of improved natural gas competitiveness in China’s energy industry restructuring[J]. International Petroleum Economics, 2015, 6: 20-22.
[5] 贾承造. 论非常规油气对经典石油天然气地质学理论的突破及意义[J]. 石油勘探与开发, 2017, 44(1): 1-11.
JIA Chengzao.Breakthrough and significance of unconventional oil and gas to classical petroleum geology theory[J]. Petroleum Exploration and Development, 2017, 44(1): 1-11.
[6] 邹才能, 翟光明, 张光亚, 等. 全球常规-非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发, 2015, 42(1): 13-25.
ZOU Caineng, ZHAI Guangming, ZHANG Guangya, et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petroleum Exploration and Development, 2015, 42(1): 13-25.
[7] 仝晓波, 闫志强. IEA《天然气2017》市场报告: 中国将成世界第四大天然气生产国[EB/OL]. (2017-07-20)[2017-12-20]. http://www.china-nengyuan.com/news/111657.html.
TONG Xiaobo, YAN Zhiqiang. IEA “Natural Gas 2017” market report: China will become the 4th largest natural gas producer in the world[EB/OL]. (2017-07-20)[2017-12-20]. http://www.china-nengyuan. com/news/111657.html.
[8] 陈荣书, 袁炳存. 天然气地质学[M]. 武汉: 武汉地质学院出版社, 1986.
CHEN Rongshu, YUAN Bingcun.Geology of natural gas[M]. Wuhan: Wuhan Institute of Geosciences Press, 1986.
[9] 包茨. 天然气地质学[M]. 北京: 科学出版社, 1988.
BAO Ci.Geology of natural gas[M]. Beijing: Science Press, 1988.
[10] 戴金星, 戚厚发, 郝石生. 天然气地质学概论[M]. 北京: 石油工业出版社, 1989.
DAI Jinxing, QI Houfa, HAO Shisheng.Introduction of natural gas geology[M]. Beijing: Petroleum Industry Press, 1989.
[11] 彭平安, 邹艳荣, 傅家谟. 煤成气生成动力学研究进展[J]. 石油勘探与开发, 2009, 36(3): 297-306.
PENG Pingan, ZOU Yanrong, FU Jiamo.Progress in generation kinetics studies of coal-derived gases[J]. Petroleum Exploration and Development, 2009, 36(3): 297-306.
[12] 戴金星, 邹才能, 陶士振, 等. 中国大气田形成条件和主控因素[J]. 天然气地球科学, 2007, 18(4): 473-484.
DAI Jinxing, ZOU Caineng, TAO Shizhen, et al.Formation conditions and main controlling factors of large gas fields in China[J]. Natural Gas Geosciences, 2007, 18(4): 473-484.
[13] 贾承造, 魏国齐, 李本亮, 等. 中国中西部两期前陆盆地的形成及其控气作用[J]. 石油学报, 2003, 24(2): 13-17.
JIA Chengzao, WEI Guoqi, LI Benliang, et al.Tectonic evolution of two-epoch foreland basins and its control for natural gas accumulation in China’s mid-western areas[J]. Acta Petrolei Sinica, 2003, 24(2): 13-17.
[14] 付金华, 魏新善, 任军峰. 伊陕斜坡上古生界大面积岩性气藏分布与成因[J]. 石油勘探与开发, 2008, 35(6): 664-667, 691.
FU Jinhua, WEI Xinshan, REN Junfeng.Distribution and genesis of large- scale Upper Paleozoic lithologic gas reservoirs on Yi-Shaan Slope[J]. Petroleum Exploration and Development, 2008, 35(6): 664-667, 691.
[15] 赵文智, 王兆云, 张水昌, 等. 有机质“接力成气”模式的提出及其在勘探中的意义[J]. 石油勘探与开发, 2005, 32(2): 1-7.
ZHAO Wenzhi, WANG Zhaoyun, ZHANG Shuichang, et al.Successive generation of natural gas from organic materials and its significance in future exploration[J]. Petroleum Exploration and Development, 2005, 32(2): 1-7.
[16] 赵文智, 汪泽成, 张水昌, 等. 中国叠合盆地深层海相油气成藏条件与富集区带[J]. 科学通报, 2007, 52(增刊I): 9-18.
ZHAO Wenzhi, WANG Zecheng, ZHANG Shuichang, et al.Analysis on forming conditions of deep marine reservoirs and their concentration belts in superimposed basins in China[J]. Chinese Science Bulletin, 2007, 52(Supp.1): 12-27.
[17] 金之钧, 蔡立国. 中国海相层系油气地质理论的继承与创新[J]. 地质学报, 2007, 81(8): 1017-1024.
JIN Zhijun, CAI Liguo.Inheritance and innovation of marine petroleum geological theory in China[J]. Acta Geologica Sinica, 2007, 81(8): 1017-1024.
[18] 马永生. 四川盆地普光超大型气田的形成机制[J]. 石油学报, 2007, 28(2): 9-14
MA Yongsheng.Generation mechanism of Puguang Gas Field in Sichuan Basin[J]. Acta Petrolei Sinica, 2007, 28(2): 9-14.
[19] 郝芳. 超压盆地生烃作用动力学与油气成藏机理[M]. 北京: 科学出版社, 2005.
HAO Fang.Hydrocarbon generation kinetics and hydrocarbon accumulation in overpressure basin[M]. Beijing: Science Press, 2005.
[20] 孙枢, 王铁冠. 中国东部中-新元古界地质学与油气资源[M]. 北京: 科学出版社, 2016.
SUN Shu, WANG Tieguan.Meso - Neoproterozoic geology and oil and gas resources in eastern China[M]. Beijing: Science Press, 2016.
[21] 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-293.
ZOU Caineng, DU Jinhu, XU Chunchun, et al.Formation, distribution, resource potential, and discovery of Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293.
[22] 李德生. 中国石油天然气总公司院士文集: 李德生集[M]. 北京: 中国大百科全书出版社, 1997.
LI Desheng.China National Petroleum Company academy collection: Li Desheng[M]. Beijing: Encyclopedia of China Publishing House, 1997.
[23] 戴金星. 中国煤成大气田及气源[M]. 北京: 科学出版社, 2014.
DAI Jinxing.Coal-generating giant gas field and gas source in China[M]. Beijing: Science Press, 2014.
[24] 翟光明. 关于非常规油气资源勘探开发的几点思考[J]. 天然气工业, 2008, 28(12): 1-3.
ZHAI Guangming.Speculations on the exploration and development of unconventional hydrocarbon resources[J]. Natural Gas Industry, 2008, 28(12): 1-3.
[25] 胡文瑞, 翟光明, 李景明. 中国非常规油气的潜力和发展[J]. 中国工程科学, 2010, 12(5): 25-29.
HU Wenrui, ZHAI Guangming, LI Jingming.Potential and development of unconventional hydrocarbon resources in China[J]. Engineering Sciences, 2010, 12(5): 25-29.
[26] 邱中建, 邓松涛. 中国非常规天然气的战略地位[J]. 天然气工业, 2012, 32(1): 1-5.
QIU Zhongjian, DENG Songtao.Strategic position of unconventional natural gas resources in China[J]. Natural Gas Industry, 2012, 32(1): 1-5.
[27] 胡见义. 石油地质学理论若干热点问题的探讨[J]. 石油勘探与开发, 2007, 34(1): 1-4.
HU Jianyi.Discussion on hot spots in petroleum geology[J]. Petroleum Exploration and Development, 2007, 34(1): 1-4.
[28] 童晓光, 郭建宇, 王兆明. 非常规油气地质理论与技术进展[J]. 地学前缘, 2014, 21(1): 9-20.
TONG Xiaoguang, GUO Jianyu, WANG Zhaoming.The progress of geological theory and technology for unconventional oil and gas[J]. Earth Science Frontiers, 2014, 21(1): 9-20.
[29] ZOU Caineng, YANG Zhi, TAO Shizhen, et al.Continuous hydrocarbon accumulation over a large area as a distinguishing characteristic of unconventional petroleum: The Ordos Basin, North-Central China[J]. Earth-Science Reviews, 2013, 126: 358-369.
[30] 邹才能. 非常规油气地质学[M]. 北京: 地质出版社, 2014.
ZOU Caineng.Unconventional petroleum geology[M]. Beijing: Geological Publishing House, 2014.
[31] 何登发, 童晓光, 贾小乐, 等. 全球大油气田形成条件与分布规律[M]. 北京: 科学出版社, 2014.
HE Dengfa, TONG Xiaoguang, JIA Xiaole, et al.Formation condition and distribution of global giant oil and gas fields[M]. Beijing: Science Press, 2014.
[32] 邹才能, 杨智, 张国生, 等. 常规-非常规油气“有序聚集”理论认识及实践意义[J]. 石油勘探与开发, 2014, 41(1): 14-27.
ZOU Caineng, YANG Zhi, ZHANG Guosheng, et al.Conventional and unconventional petroleum “orderly accumulation”: Concept and practical significance[J]. Petroleum Exploration and Development, 2014, 41(1): 14-27.
文章导航

/