石油工程

自振空化射流空泡动力学特征及溃灭强度影响因素

  • 彭可文 ,
  • 田守嶒 ,
  • 李根生 ,
  • 黄中伟 ,
  • 杨睿月 ,
  • 郭肇权
展开
  • 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249
彭可文(1987-),男,湖南益阳人,中国石油大学(北京)石油工程学院在读博士研究生,主要从事空化射流方面的研究。地址:北京市昌平区府学路18号,中国石油大学(北京)石油工程学院,邮政编码:102249。E-mail:pengkw1003@hotmail.com

收稿日期: 2017-11-04

  修回日期: 2018-02-06

  网络出版日期: 2018-03-07

基金资助

国家自然科学基金(51674275,U1562212,51521063)

Bubble dynamics characteristics and influencing factors on the cavitation collapse intensity for self-resonating cavitating jets

  • PENG Kewen ,
  • TIAN Shouceng ,
  • LI Gensheng ,
  • HUANG Zhongwei ,
  • YANG Ruiyue ,
  • GUO Zhaoquan
Expand
  • State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China

Received date: 2017-11-04

  Revised date: 2018-02-06

  Online published: 2018-03-07

摘要

以空泡动力学分析为基础,考虑自振射流流场压力变化特性、空泡传热和传质规律,建立了空化气泡在自振射流流场中动态变化的计算模型,研究了空泡溃灭强度的影响因素。研究表明,空化射流破坏岩石的能力主要取决于空泡第1次溃灭的强度,空泡后续溃灭的强度显著降低。自振效应使空泡溃灭压力峰值及其持续时间增大,能大幅提高空泡溃灭强度。水力参数是空泡溃灭强度的主要影响因素:一定射流速度下,存在最优的围压值,使空泡溃灭强度达到最大;增大射流速度能提高空泡溃灭强度。流体物性对空泡溃灭强度的影响较小:溃灭强度随流体密度增大而降低,受流体黏度和表面张力的影响较小。研究结果有助于了解空化效应提高射流冲蚀性能的作用机理,提升自振空化射流技术的现场应用效果。图10参23

本文引用格式

彭可文 , 田守嶒 , 李根生 , 黄中伟 , 杨睿月 , 郭肇权 . 自振空化射流空泡动力学特征及溃灭强度影响因素[J]. 石油勘探与开发, 2018 , 45(2) : 326 -332 . DOI: 10.11698/PED.2018.02.16

Abstract

Based on bubble dynamics theory, a mathematic model describing the cavitation bubble size variation in the flow field of self-resonating cavitating jet was developed considering the pressure field and mass and heat exchange between cavitation bubble and ambient fluid. With this model, the influence factors on the cavitation intensity are investigated. The results show that the destructiveness of cavitating jet in breaking rocks depends on the bubble’s first collapse, with decreasing intensity in the subsequent collapses. The self-resonating effect significantly enhances the cavitation intensity by promoting the collapse pressure and elongating its duration. Hydraulic parameters are proven to be the dominating factors influencing cavitation intensity: while collapse intensity monotonously increases with jet velocity, there exists an optimum ambient pressure where highest collapse intensity can be achieved. Conversely, the fluid properties show minor influences: cavitation intensity only slightly decreases with the increasing of fluid’s density and barely changes with the variation of viscosity and surface tension. The results from this investigation help to uncover the mechanism of the enhanced erosion potential of self-resonating cavitating jet. The conclusions can be used to further improve the performance of self-resonating cavitating jet in field applications.

参考文献

[1] 李根生, 沈忠厚. 高压水射流理论及其在石油工程中应用研究进展[J]. 石油勘探与开发, 2005, 32(1): 96-99.
LI Gensheng, SHEN Zhonghou.Advances in researches and applications of water jet theory in petroleum engineering[J]. Petroleum Exploration and Development, 2005, 32(1): 96-99.
[2] 李根生, 沈忠厚, 周长山, 等. 自振空化射流冲击压力脉动特性实验研究[J]. 水动力学研究与进展, 2003, 18(5): 570-575.
LI Gensheng, SHEN Zhonghou, ZHOU Changshan, et al.An experimental study on impact pressure characteristics of self-resonant cavitating jets[J]. Chinese Journal of Hydrodynamics, 2003, 18(5): 570-575.
[3] 李根生, 史怀忠, 沈忠厚, 等. 水力脉冲空化射流钻井机理与试验[J]. 石油勘探与开发, 2008, 35(2): 239-243.
LI Gensheng, SHI Huaizhong, SHEN Zhonghou, et al.Mechanisms and tests for hydraulic pulsed cavitating jet assisted drilling[J]. Petroleum Exploration and Development, 2008, 35(2): 239-243.
[4] 李根生, 沈忠厚, 张召平, 等. 自振空化射流钻头喷嘴研制及现场试验[J]. 石油钻探技术, 2003, 31(5): 11-13.
LI Gensheng, SHEN Zhonghou, ZHANG Zhaoping, et al.Development and field tests of self-resonating cavitating water jet nozzle for oilwell drilling[J]. Petroleum Drilling Techniques, 2003, 31(5): 11-13.
[5] 易灿, 李根生, 郭春阳, 等. 自振空化射流改善油层特性实验研究及现场应用[J]. 石油学报, 2006, 27(1): 81-84.
YI Can, LI Gensheng, GUO Chunyang, et al.Laboratory investigation and field application of self-resonating cavitation jet for improving polluted rock permeability[J]. Acta Petrolei Sinica, 2006, 27(1): 81-84.
[6] 宋先知, 李根生, 王海柱, 等. 多夹层岩盐自振空化射流造腔技术研究[J]. 石油机械, 2009, 37(12): 20-23.
SONG Xianzhi, LI Gensheng, WANG Haizhu, et al.Research on the technology of multi-interbedded halite cavity construction by self-excited vibration cavitation jet[J]. China Petroleum Machinery, 2009, 37(12): 20-23.
[7] 李根生, 沈忠厚, 周长山, 等. 自振空化射流研究与应用进展[J]. 中国工程科学, 2005, 7(1): 27-32.
LI Gensheng, SHEN Zhonghou, ZHOU Changshan, et al.Advances in investigation and application of self-resonating cavitating water jet[J]. Engineering Science, 2005, 7(1): 27-32.
[8] 史怀忠, 李根生, 王学杰, 等. 水力脉冲空化射流欠平衡钻井提高钻速技术[J]. 石油勘探与开发, 2010, 37(1): 111-115.
SHI Huaizhong, LI Gensheng, WANG Xuejie, et al.Improving the rate of penetration by hydraulic pulsating-cavitating water jet under-balance pressure drilling[J]. Petroleum Exploration and Development, 2010, 37(1): 111-115.
[9] 易灿, 李根生, 沈忠厚. 自振空化射流提高钻井速度的实验研究[J]. 天然气工业, 2006, 26(5): 52-54.
YI Can, LI Gensheng, SHEN Zhonghou.Experimental study on drilling rate improvement by self-resonating cavitating jet[J]. Natural Gas Industry, 2006, 26(5): 52-54.
[10] 李根生, 易灿, 黄中伟. 自振空化射流改善油层渗透率机理及实验研究[J]. 中国石油大学学报(自然科学版), 2007, 31(1): 72-75.
LI Gensheng, YI Can, HUANG Zhongwei.Mechanism and expermiental study of self-resonating cavitating jet for improving polluted rock permeability[J]. Journal of China University of Petroleum (Edition of Natural Science), 2007, 31(1): 72-75.
[11] KELLER J B, MIKSIS M.Bubble oscillations of large amplitude[J]. Journal of the Acoustical Society of America, 1980, 68(2): 628-633.
[12] QIN Z, BREMHORST K, ALEHOSSEIN H, et al.Simulation of cavitation bubbles in a convergent-divergent nozzle water jet[J]. Journal of Fluid Mechanics, 2007, 573: 1-25.
[13] STOREY B D, SZERI A J.Water vapour, sonoluminescence and sonochemistry[J]. Royal Society of London Proceedings: Series A: Mathematical, Physical and Engineering Sciences, 2000, 456(1999): 1685-1709.
[14] BRENNEN C E.Cavitation and bubble dynamics[M]. Cambridge: Cambridge University Press, 2013.
[15] LAUTERBORN W, KURZ T, GEISLER R, et al.Acoustic cavitation, bubble dynamics and sonoluminescence[J]. Ultrasonics Sonochemistry, 2007, 14(4): 484-491.
[16] LAUTERBORN W, KURZ T.Physics of bubble oscillations[J]. Reports on Progress in Physics, 2010, 73(10): 106501.
[17] VERSLUIS M, SCHMITZ B, VON DER HEYDT A, et al. How snapping shrimp snap: Through cavitating bubbles[J]. Science, 2000, 289(5487): 2114-2117.
[18] LI Gensheng, SHEN Zhonghou, ZHOU Changshan, et al.Investigation and application of self-resonating cavitating water jet in petroleum engineering[J]. Petroleum Science and Technology, 2005, 23(1): 1-15.
[19] FLINT E B, SUSLICK K S.The temperature of cavitation[J]. Science, 1991, 253(5026): 1397-1399.
[20] HSIAO C T, JAYAPRAKASH A, KAPAHI A, et al.Modelling of material pitting from cavitation bubble collapse[J]. Journal of Fluid Mechanics, 2014, 755: 142-175.
[21] HILGENFELDT S, LOHSE D, ZOMACK M.Response of bubbles to diagnostic ultrasound: A unifying theoretical approach[J]. The European Physical Journal B: Condensed Matter and Complex Systems, 1998, 4(2): 247-255.
[22] SOYAMA H, HOSHINO J.Enhancing the aggressive intensity of hydrodynamic cavitation through a Venturi tube by increasing the pressure in the region where the bubbles collapse[R]. AIP 045113, 2016.
[23] PLESSET M S, PROSPERETTI A.Bubble dynamics and cavitation[J]. Annual Review of Fluid Mechanics, 1977, 9(1): 145-185.
文章导航

/