油气勘探

砂岩压实三元解析减孔模型及其石油地质意义——以鄂尔多斯盆地十里加汗地区二叠系下石盒子组致密砂岩为例

  • 夏鲁 ,
  • 刘震 ,
  • 李潍莲 ,
  • 卢朝进 ,
  • 杨晓光 ,
  • 刘明洁
展开
  • 1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249;
    2. 中国石油大学(北京)地球科学学院,北京 102249;
    3. 西南石油大学地球科学与技术学院,成都 610500
夏鲁(1985-),男,山东滕州人,现为中国石油大学(北京)地球科学学院在读博士研究生,主要从事致密砂岩油气及岩性油气储集层方面研究。地址:北京市昌平区府学路18号,中国石油大学地质楼825室,邮政编码:102249。E-mail:xialu999@126.com

收稿日期: 2017-08-24

  修回日期: 2018-03-02

  网络出版日期: 2018-03-07

基金资助

国家自然科学基金(41672124,41502147); 中国石油“十三五”油气重大专项(2016ZX05047001-002)

Ternary analytic porosity-reduction model of sandstone compaction trend and its significance in petroleum geology: A case study of tight sandstones in Permian Lower Shihezi Formation of Shilijiahan area, Ordos Basin, China

  • XIA Lu ,
  • LIU Zhen ,
  • LI Weilian ,
  • LU Chaojin ,
  • YANG Xiaoguang ,
  • LIU Mingjie
Expand
  • 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China;
    2. College of Geosciences, China University of Petroleum, Beijing 102249, China;
    3. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China

Received date: 2017-08-24

  Revised date: 2018-03-02

  Online published: 2018-03-07

摘要

以鄂尔多斯盆地十里加汗地区二叠系下石盒子组致密砂岩为研究对象,定量研究砂岩致密化过程中不同埋深、不同时间、不同压实强度对孔隙度的影响。首先深入分析砂岩压实剖面,其次以黏弹塑性应力-应变模型为基础进行理论推导,然后分别利用多元回归和迭代运算方法来确定砂岩弹性模量和等效黏性系数随埋深和时间的变化趋势,最后建立砂岩压实三元解析减孔模型,并通过与镜下薄片观察结果和常用模型进行对比来证明其合理性。新模型能将减孔量分为弹性减孔、黏塑性减孔和胶结减孔3个部分,针对下石盒子组2段岩屑砂岩的模型计算结果与Houseknecht图版上镜下薄片的统计平均值较为接近,基本上能反映砂岩正常演化趋势上压实与胶结作用的相对强弱。此外,该模型能更合理地解释受溶蚀增孔作用影响不大的砂岩的压实作用,而且能够评价不同埋藏和抬升过程的砂岩压实程度及其对储集层致密化的影响。图12表1参38

本文引用格式

夏鲁 , 刘震 , 李潍莲 , 卢朝进 , 杨晓光 , 刘明洁 . 砂岩压实三元解析减孔模型及其石油地质意义——以鄂尔多斯盆地十里加汗地区二叠系下石盒子组致密砂岩为例[J]. 石油勘探与开发, 2018 , 45(2) : 275 -286 . DOI: 10.11698/PED.2018.02.10

Abstract

The tight sandstones in the Permian Lower Shihezi Formation of Shilijiahan area in the Ordos Basin was taken as study object in this research to examine the effects of burial depth, burial time and compaction strength on porosity during densification of reservoir. Firstly, sandstone compaction profiles were analyzed in detail. Secondly, the theoretical study was performed based on visco-elasto-plastic stress-strain model. Thirdly, multiple regression and iterative algorithm were used to ascertain the variation trends of Young’s modulus and equivalent viscosity coefficient with burial depth and burial time, respectively. Accordingly, the ternary analytic porosity-reduction model of sandstone compaction trend was established. Eventually, the reasonability of improved model was tested by comparing with thin-section statistics under microscope and the models in common use. The study shows that the new model can divide the porosity reduction into three parts, namely, elastic porosity loss, visco-plastic porosity loss and porosity loss from cementation. And the results calculated by the new model of litharenite in He 2 Member are close to the average value from the thin-section statistics on Houseknecht chart, which approximately reveals the relative magnitudes of compaction and cementation in the normal evolution trend of sandstone porosity. Furthermore, the model can more exactly depict the compaction trend of sandstone affected little by dissolution than previous compaction models, and evaluate sandstone compaction degree and its contribution to reservoir densification during different burial and uplift processes.

参考文献

[1] 贾承造. 论非常规油气对经典石油天然气地质学理论的突破及意义[J]. 石油勘探与开发, 2017, 44(1): 1-11.
JIA Chengzao.Breakthrough and significance of unconventional oil and gas to classical petroleum geological theory[J]. Petroleum Exploration and Development, 2017, 44(1): 1-11.
[2] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136.
JIA Chengzao, ZHENG Min, ZHANG Yongfeng.Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136.
[3] SCHERER M.Parameters influencing porosity in sandstones: A model for sandstone porosity prediction[J]. AAPG Bulletin, 1987, 71(5): 485-491.
[4] GILES M R, INDRELID S L, JAMES D M D. Compaction: The great unknown in basin modelling[J]. Geological Society London Special Publications, 1998, 141(1): 15-43.
[5] 孟元林, 张磊, 曲国辉, 等. 异常低压背景下储集层成岩特征: 以渤海湾盆地辽河坳陷西部凹陷南段古近系为例[J]. 石油勘探与开发, 2016, 43(4): 669-674.
MENG Yuanlin, ZHANG Lei, QU Guohui, et al.Diagenetic characteristics under abnormally low pressure: A case from the Paleocene of southern Western Sag of Liaohe Depression, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(4): 669-674.
[6] RAYMOND S.Burial history and diagenetic reaction kinetics[J]. AAPG Bulletin, 1983, 67(4): 684-691.
[7] SCHMOKER J W, GAUTIER D L.Sandstone porosity as function of thermal maturity[J]. Geology, 1988, 16(11): 1007-1010.
[8] BLOCH S.Empirical prediction of porosity and permeability in sandstones[J]. AAPG Bulletin, 1991, 75(7): 1145-1160.
[9] 刘震, 武耀辉. 泥岩压实程度与热成熟度关系分析[J]. 地质论评, 1997, 43(3): 290-296.
LIU Zhen, WU Yaohui.Analysis on relation between compaction of mudstone and thermal maturity[J]. Geological Review, 1997, 43(3): 290-296.
[10] ATHY L F.Density, porosity and compaction of sedimentary rock[J]. AAPG Bulletin, 1930, 14(1): 1-24.
[11] SMITH J E.The dynamics of shale compaction and evolution of pore-fluid pressures[J]. Journal of the International Association for Mathematical Geology, 1971, 3(3): 239-263.
[12] BURYAKOVSKIY L A, DJEVANSHIR R D, CHILINGARIAN G V.Mathematical simulation of sediment compaction[J]. Journal of Petroleum Science & Engineering, 1991, 5(2): 151-161.
[13] SOMBRA C L, CHANG H K.Burial history and porosity evolution of Brazilian upper Jurassic to Tertiary sandstone reservoirs[C]// KUPECZ J A, GLUYAS J G. Reservoir quality prediction in sandstones and carbonates. Tulsa: AAPG, 1997: 79-89.
[14] 刘震, 邵新军, 金博, 等. 压实过程中埋深和时间对碎屑岩孔隙度演化的共同影响[J]. 现代地质, 2007, 21(1): 125-132.
LIU Zhen, SHAO Xinjun, JIN Bo, et al.Co-effect of depth and burial time on the evolution of porosity for classic rocks during the stage of compaction[J]. Geoscience, 2007, 21(1): 125-132.
[15] 何小胡, 刘震, 梁全胜, 等. 沉积地层埋藏过程对泥岩压实作用的影响[J]. 地学前缘, 2010, 17(4): 167-173.
HE Xiaohu, LIU Zhen, LIANG Quansheng, et al.The influence of burial history on mudstone compaction[J]. Earth Science Frontiers, 2010, 17(4): 167-173.
[16] 潘高峰, 刘震, 赵舒, 等. 砂岩孔隙度演化定量模拟方法: 以鄂尔多斯盆地镇泾地区延长组为例[J]. 石油学报, 2011, 32(2): 249-256.
PAN Gaofeng, LIU Zhen, ZHAO Shu, et al.Quantitative simulation of sandstone porosity evolution: A case from Yanchang formation of Zhenjing area, Ordos Basin[J]. Acta Petrolei Sinica, 2011, 32(2): 249-256.
[17] 郭彦如, 刘俊榜, 杨华, 等. 鄂尔多斯盆地延长组低渗透致密岩性油藏成藏机理[J]. 石油勘探与开发, 2012, 39(4): 417-425.
GUO Yanru, LIU Junbang, YANG Hua, et al.Hydrocarbon accumulation mechanism of low permeable tight lithologic oil reservoirs in the Yanchang Formation, Ordos Basin, China[J]. Petroleum Exploration and Development, 2012, 39(4): 417-425.
[18] 姚泾利, 唐俊, 庞国印, 等. 鄂尔多斯盆地白豹—华池地区长8段孔隙度演化定量模拟[J]. 天然气地球科学, 2013, 24(1): 38-46.
YAO Jingli, TANG Jun, PANG Guoyin, et al.Quantitative simulation on porosity-evolution in member 8 of Yanchang formation of Baibao-Huachi area, Ordos Basin[J]. Natural Gas Geoscience, 2013, 24(1): 38-46.
[19] 谢润成, 周文, 李良, 等. 鄂尔多斯盆地北部杭锦旗地区上古生界砂岩储层特征[J]. 新疆地质, 2010, 28(1): 86-90.
XIE Runcheng, ZHOU Wen, LI Liang, et al.Characteristics of upper Paleozoic sandstone reservoir in Hangjinqi area of Ordos Basin[J]. Xinjiang Geology, 2010, 28(1): 86-90.
[20] SELLEY R C.Porosity gradients in North Sea oil-bearing sandstones[J]. Journal of the Geological Society, 1978, 135(1): 119-132.
[21] RAMM M.Porosity-depth trends in reservoir sandstones: Theoretical models related to Jurassic sandstones offshore Norway[J]. Marine & Petroleum Geology, 1992, 9(5): 553-567.
[22] 朱国华. 成岩作用与砂层(岩)孔隙的变化[J]. 石油与天然气地质, 1982, 3(3): 195-203.
[23] ZHU Guohua.Diagenesis in relation to evolution of pores in sandstone[J]. Oil & Gas Geology, 1982, 3(3): 195-203.
[24] 寿建峰, 朱国华. 砂岩储层孔隙保存的定量预测研究[J]. 地质科学, 1998, 33(2): 244-250.
[25] SHOU Jianfeng, ZHU Guohua.Study on quantitative prediction of porosity preservation in sandstone reservoir[J]. Chinese Journal of Geology, 1998, 33(2): 244-250.
[26] 罗静兰, 张成立, 阎世可, 等. 盆地埋藏史及其对砂岩储层物性演化的影响: 以陕北延长油区砂岩储层为例[J]. 石油与天然气地质, 2001, 22(2): 123-136.
LUO Jinglan, ZHANG Chengli, YAN Shike, et al.Effect of burial history on physical property of sandstone reservoirs: Take Yanchang oil region in north Shaanxi as an example[J]. Oil & Gas Geology, 2001, 22(2): 123-136.
[27] 刘明洁, 刘震, 刘静静, 等. 鄂尔多斯盆地上三叠统延长组机械压实作用与砂岩致密过程及对致密化影响程度[J]. 地质论评, 2014, 60(3): 655-665.
LIU Mingjie, LIU Zhen, LIU Jingjing, et al.The relationship between the mechanical compaction and the densification process of sandstones and the affect degree of compaction to the densifying of Yanchang Formation, Ordos Basin[J]. Geological Review, 2014, 60(3): 655-665.
[28] 刘明洁, 刘震, 刘静静, 等. 砂岩储集层致密与成藏耦合关系: 以鄂尔多斯盆地西峰—安塞地区延长组为例[J]. 石油勘探与开发, 2014, 41(2): 168-175.
LIU Mingjie, LIU Zhen, LIU Jingjing, et al.Coupling relationship between sandstone reservoir densification and hydrocarbon accumulation: A case from the Yanchang Formation of the Xifeng and Ansai areas, Ordos Basin[J]. Petroleum Exploration and Development, 2014, 41(2): 168-175.
[29] 张清. 岩石力学基础[M]. 北京: 中国铁道出版社, 1986: 135-136.
ZHANG Qing.Rock mechanics foundation[M]. Beijing: China Railway Press, 1986: 135-136.
[30] 杨华, 席胜利, 魏新善, 等. 鄂尔多斯盆地大面积致密砂岩气成藏理论[M]. 北京: 科学出版社, 2016.
YANG Hua, XI Shengli, WEI Xinshan, et al.Accumulation theories of large-area tight sandstone gas in Ordos Basin[M]. Beijing: Science Press, 2016.
[31] 李婕, 赵俊兴, 孔祥超, 等. 鄂北杭锦旗地区下石盒子组沉积相演化及控制因素[J]. 山东科技大学学报(自然科学版), 2013, 32(2): 34-42.
LI Jie, ZHAO Junxing, KONG Xiangchao, et al.Sedimentary facies evolution and controlling factors of Lower Shihezi Formation in Hangjinqi Area, North Ordos Basin[J]. Journal of Shandong University of Science and Technology (Natural Science Edition), 2013, 32(2): 34-42.
[32] 李潍莲, 纪文明, 刘震, 等. 鄂尔多斯盆地北部泊尔江海子断裂对上古生界天然气成藏的控制[J]. 现代地质, 2015, 29(3): 584-590.
LI Weilian, JI Wenming, LIU Zhen, et al.Control of Boerjianghaizi Fault on gas accumulation of Upper Paleozoic in Northern Ordos Basin[J]. Geoscience, 2015, 29(3): 584-590.
[33] 陈勉, 金衍, 张广清. 石油工程岩石力学[M]. 北京: 科学出版社, 2008: 303-304.
CHEN Mian, JIN Yan, ZHANG Guangqing.Petroleum engineering rock mechanics[M]. Beijing: Science Press, 2008: 303-304.
[34] 杨秀娟, 张敏, 闫相祯. 基于声波测井信息的岩石弹性力学参数研究[J]. 石油地质与工程, 2008, 22(4): 39-42.
YANG Xiujuan, ZHANG Min, YAN Xiangzhen.Study on acoustic logging-based rock elasticity parameters[J]. Petroleum Geology and Engineering, 2008, 22(4): 39-42.
[35] 边会媛, 王飞, 张永浩, 等. 储层条件下致密砂岩动静态弹性力学参数实验研究[J]. 岩石力学与工程学报, 2015, 34(S1): 3045-3054.
BIAN Huiyuan, WANG Fei, ZHANG Yonghao, et al.Experimental study of dynamic and static elastic parameters of tight sandstones under reservoir conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3045-3054.
[36] 张晁军, 曹建玲, 石耀霖. 从震后形变探讨青藏高原下地壳黏滞系数[J]. 中国科学: 地球科学, 2008, 38(10): 1250-1257.
ZHANG Chaojun, CAO Jianling, SHI Yaolin.Study on viscosity coefficient of lower crust under Tibetan Plateau from post-earthquake deformation[J]. SCIENCE CHINA Earth Sciences, 2009, 52(3): 411-419.
[37] 应凤祥, 罗平, 何东博, 等. 中国含油气盆地碎屑岩储集层成岩作用与成岩数值模拟[M]. 北京: 石油工业出版社, 2004: 91-97.
YING Fengxiang, LUO Ping, HE Dongbo, et al.Diagenesis and diagenetic numerical simulation of clastic reservoirs in petroliferous basins of China[M]. Beijing: Petroleum Industry Press, 2004: 91-97.
[38] HOUSEKNECHT D W.Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones[J]. AAPG Bulletin, 1987, 71(6): 633-642.
[39] CAI C E, LIU Z, QIU N S, et al.Hydrocarbon accumulation in the northwest Chaluhe Fault Depression, Yitong Basin, North China[J]. Australian Journal of Earth Sciences, 2015, 62(4): 513-527.
[40] 王飞龙. 鄂尔多斯盆地杭锦旗地区上古生界古水动力体系与油气运移成藏[D]. 西安: 西北大学, 2007: 21-28.
WANG Feilong.Study on the palaeohydrodynamic system and hydrocarbon migration and accumulation of Upper Paleozoic in the region of Hangjinqi in Ordos Basin[D]. Xi’an: Northwest University, 2007: 21-28.
文章导航

/