石油工程

水力压裂支撑剂嵌入深度计算方法

  • 陈铭 ,
  • 张士诚 ,
  • 柳明 ,
  • 马新仿 ,
  • 邹雨时 ,
  • 周彤 ,
  • 李宁 ,
  • 李四海
展开
  • 1. 中国石油大学(北京),北京 102249
    2. 中国石油长城钻探工程有限公司,北京 100101
    3. 中国石化石油勘探开发研究院,北京 100083
陈铭(1990-),男,山东泰安人,中国石油大学(北京)在读博士研究生,主要从事水力压裂理论与数值模拟研究工作。地址:北京市昌平区府学路18号,中国石油大学(北京)289信箱,邮政编码:102249。E-mail: xmcm0122@126.com

收稿日期: 2017-06-26

  修回日期: 2017-11-24

  网络出版日期: 2018-01-10

基金资助

国家重点基础研究发展计划(973)项目“陆相致密油高效开发基础研究”(2015CB250903); 国家自然科学基金 “致密油压裂水平井渗流机理研究”(51574255); 国家油气重大专项“致密油储层高效体积改造技术”(2016ZX05046-004)

Calculation method of proppant embedment depth in hydraulic fracturing

  • CHEN Ming ,
  • ZHANG Shicheng ,
  • LIU Ming ,
  • MA Xinfang ,
  • ZOU Yushi ,
  • ZHOU Tong ,
  • LI Ning ,
  • LI Sihai
Expand
  • 1. China University of Petroleum, Beijing 102249, China
    2. CNPC Great Wall Drilling Company, Beijing 100101, China
    3. Research Institute of Petroleum Exploration and Development of SINOPEC, Beijing 100083, China

Received date: 2017-06-26

  Revised date: 2017-11-24

  Online published: 2018-01-10

摘要

针对水力压裂支撑剂嵌入问题,基于支撑剂嵌入岩体的力学过程,建立支撑剂嵌入岩体的本构方程,并结合岩体-支撑剂体系的接触应力分析,提出考虑弹塑性变形的支撑剂嵌入深度计算方法,基于该方法分析了嵌入深度的影响因素。相对于弹性模型,新方法计算结果更接近于实验测量结果,预测更加可靠,且更便于进行理论计算和分析。研究表明:支撑剂嵌入岩体的过程主要发生弹塑性嵌入;支撑剂单层铺置条件下铺置浓度越高嵌入深度越小,多层铺置条件下增大支撑剂铺置浓度不会改变嵌入深度;支撑剂嵌入比例越大,承压支撑剂越多,支撑剂嵌入深度越小;高闭合应力情况下支撑剂嵌入更加显著,流体压力下降会显著增大支撑剂嵌入深度;增大支撑剂粒径或岩石与支撑剂弹性模量比值,会减小支撑剂嵌入深度。图10参30

本文引用格式

陈铭 , 张士诚 , 柳明 , 马新仿 , 邹雨时 , 周彤 , 李宁 , 李四海 . 水力压裂支撑剂嵌入深度计算方法[J]. 石油勘探与开发, 2018 , 45(1) : 149 -156 . DOI: 10.11698/PED.2018.01.16

Abstract

For the issue of proppant embedment in hydraulic fracturing, a new calculation method of embedment depth considering elastic-plastic deformation was proposed based on the mechanism of proppant embedment into rocks by combining proppant embedment constitutive equations and contact stresses on the rock-proppant system. And factors affecting embedment depth of proppant were analyzed using the new method. Compared with the elastic embedment model, the results calculated by the new method match well with the experimental data, proving the new method is more reliable and more convenient to make theoretical calculation and analysis. The simulation results show the process of proppant embedment into rocks is mainly elastic-plastic. The embedment depth of monolayer proppants decreases with higher proppant concentration. Under multi-layer distribution conditions, increasing the proppant concentration will not change its embedment depth. The larger the proppant embedment ratio, the more the stress-bearing proppants, and the smaller the embedment depth will be. The embedment depth under higher closure stress is more remarkable. The embedment depth increased with the drawdown of fluid pressure in the fracture. Increasing proppant radius or the ratio of proppant Young’s modulus to rock Young’s modulus can reduce the proppant embedment depth.

参考文献

[1] 胥云, 陈铭, 吴奇, 等. 水平井体积改造应力干扰计算模型及其应用[J]. 石油勘探与开发, 2016, 43(5): 780-786, 798.
XU Yun, CHEN Ming, WU Qi, et al. Stress interference calculation model and its application in volume stimulation of horizontal wells[J]. Petroleum Exploration and Development, 2016, 43(5): 780-786, 798.
[2] CHEN D, YE Z H, PAN Z J, et al. A permeability model for the hydraulic fracture filled with proppant packs under combined effect of compaction and embedment[J]. Journal of Petroleum Science and Engineering, 2016, 149: 428-435.
[3] CUI A, GLOVER K, WUST R. Elastic and plastic mechanical properties of liquids-rich unconventional shales and their implications for hydraulic fracturing and proppant embedment: A case study of the Nordberg Member in Alberta Canada[R]. Minneapolis: 48th US Rock Mechanics/Geomechanics Symposium, 2014.
[4] LACY L, RICKARDS A, ALI S. Embedment and fracture conductivity in soft formations associated with HEC, borate and water-based fracture designs[R]. SPE 38590, 1997.
[5] LACY L, RICKARDS A, BILDEN D. Fracture width and embedment testing in soft reservoir sandstone[J]. SPE Drilling & Completion, 1998, 13(1): 25-29.
[6] 郭建春, 卢聪, 赵金洲, 等. 支撑剂嵌入程度的实验研究[J]. 煤炭学报, 2008, 33(6): 661-664.
GUO Jianchun, LU Cong, ZHAO Jinzhou, et al. Experimental research on proppant embedment[J]. Journal of China Coal Society, 2008, 33(6): 661-664.
[7] 卢聪, 郭建春, 王文耀, 等. 支撑剂嵌入及对裂缝导流能力损害的实验[J]. 天然气工业, 2008, 28(2): 99-101.
LU Cong, GUO Jianchun, WANG Wenyao, et al. Experimental research on proppant embedment and its damage to fractures conductivity[J]. Natural Gas Industry, 2008, 28(2): 99-101.
[8] TAN Y, PAN Z, LIU J, et al. Experimental study of permeability and its anisotropy for shale fracture supported with proppant[J]. Journal of Natural Gas Science & Engineering, 2017, 44: 250-264.
[9] ALRAMAHI B, SUNDBERG M. Proppant embedment and conductivity of hydraulic fractures in shales[R]. ARMA 12-291, 2012.
[10] DENG S, LI H, MA G, et al. Simulation of shale-proppant interaction in hydraulic fracturing by the discrete element method[J]. International Journal of Rock Mechanics & Mining Sciences, 2014, 70(9): 219-228.
[11] HUITT J, MCGLOTHLIN B. The propping of fractures in formations susceptible to propping-sand embedment[R]. API 58-115, 1958.
[12] VOLK L, RAIBLE C, CARROLL H, et al. Embedment of high strength proppant into low-permeability reservoir rock[R]. SPE 9867, 1981.
[13] LI K W, GAO Y P, LU Y C, et al. New mathematical models for calculating proppant embedment and fracture conductivity[J]. SPE Journal, 2015, 20(3): 496-507.
[14] ZHANG J J, KAMAMENOV A, ZHU D, et al. Laboratory measurement of hydraulic fracture conductivities in the Barnett shale[R]. SPE 163839-PA, 2014.
[15] CHEN C, MARTYSEVICH V, OCONNELL P, et al. Temporal evolution of the geometrical and transport properties of a fracture/proppant system under increasing effective stress[J]. SPE Journal, 2015, 20(3): 527-535.
[16] MUELLER M, AMRO M. Indentation hardness for improved proppant embedment prediction in shale formations[R]. SPE 174227, 2015.
[17] AWOLEKE O, ZHU D, HILL A D. New propped-fracture-conductivity models for tight gas sands[J]. SPE Journal, 2016, 21(5): 1-10.
[18] 徐芝纶. 弹性力学简明教程[M]. 4版. 北京: 高等教育出版社, 2013: 228-230.
XU Zhilun. Short course of elasticity[M]. 4th ed. Beijing: Higher Education Press, 2013: 228-230.
[19] JOHNSON K L. Contact mechanics[M]. Cambridge: Cambridge University Press, 1985.
[20] BIG-ALABO A, HARRISON P, CARTMELL M P. Contact model for elastoplastic analysis of half-space indentation by a spherical impactor[J]. Computers & Structures, 2015, 151: 20-29.
[21] SONG Z, KOMVOPOULOS K. Elastic-plastic spherical indentation: Deformation regimes, evolution of plasticity, and hardening effect[J]. Mechanics of Materials, 2013, 61(8): 91-100.
[22] BARTIER O, HERNOT X, MAUVOISIN G. Theoretical and experimental analysis of contact radius for spherical indentation[J]. Mechanics of Materials, 2010, 42(6): 640-656.
[23] STRONGE W J. Impact mechanics[M]. Cambridge: Cambridge University Press, 2000.
[24] STRONGE W J. Contact problems for elasto-plastic impact in multi-body systems[J]. Lecture Notes in Physics, 2000, 551: 189-234.
[25] ZHAO Y W, MAIETTA D M, CHANG L. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow[J]. Journal of Tribology, 2000, 122(1): 86-93.
[26] BRAKE M R. An analytical elastic-perfectly plastic contact model[J]. International Journal of Solids & Structures, 2012, 49(22): 3129-3141.
[27] KOGUT L, ETSION I. Elastic-plastic contact analysis of a sphere and a rigid flat[J]. Journal of Applied Mechanics, 2002, 69(5): 657-662.
[28] FRANCIS H A. Phenomenological analysis of plastic spherical indentation[J]. Journal of Engineering Materials & Technology Transactions of the ASME, 1976, 98(3): 272-281.
[29] ZHANG J J, OUYANG L, HILL A D, et al. Experimental and numerical studies of reduced fracture conductivity due to proppant embedment in shale reservoirs[R]. SPE 170775, 2014.
[30] HAN J H, WANG J Y, PURI V. A fully coupled geomechanics and fluid flow model for proppant pack failure and fracture conductivity damage analysis[R]. SPE 168617, 2014.
文章导航

/