学术讨论

基于孔径组分的核磁共振测井渗透率计算新方法——以中东A油田生物碎屑灰岩储集层为例

  • 韩玉娇 ,
  • 周灿灿 ,
  • 范宜仁 ,
  • 李潮流 ,
  • 袁超 ,
  • 丛云海
展开
  • 1. 中国石油勘探开发研究院,北京 100083
    2. 中国石油大学(华东)地球科学与技术学院,山东青岛 266580
    3. 中国石油集团长城钻探工程有限公司地质研究院,辽宁盘锦 124012
韩玉娇(1990-),女,黑龙江哈尔滨人,现为中国石油勘探开发研究院在读博士研究生,主要从事测井方法原理与储集层解释评价方面的研究工作。地址:北京市海淀区学院路20号,中国石油勘探开发研究院测井与遥感技术研究所,邮政编码:100083。E-mail:524167987@qq.com

收稿日期: 2017-07-30

  修回日期: 2017-10-09

  网络出版日期: 2017-12-05

基金资助

中国石油天然气集团公司科学研究与技术开发项目“非均质复杂储层测井新技术新方法研究”(2016A-3601)

A new permeability calculation method using nuclear magnetic resonance logging based on pore sizes: A case study of bioclastic limestone reservoirs in the A oilfield of the Mid-East

  • HAN Yujiao ,
  • ZHOU Cancan ,
  • FAN Yiren ,
  • LI Chaoliu ,
  • YUAN Chao ,
  • CONG Yunhai
Expand
  • 1. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
    2. School of Geosciences, China University of Petroleum, Qingdao 266580, China
    3. GWDC Geology Research Institute, CNPC, Panjin 124012, China

Received date: 2017-07-30

  Revised date: 2017-10-09

  Online published: 2017-12-05

摘要

针对复杂岩性储集层孔隙结构多样、渗流机理复杂,常规方法难以准确求取渗透率难题,深入分析经典核磁共振渗透率计算模型的局限性,明确孔隙结构和孔隙度是渗透率的主控因素,提出先利用核磁共振T2(横向弛豫时间)谱进行孔径组分划分,然后根据不同组分对渗透率的贡献差异计算渗透率的新方法。基于该研究思路,以中东A油田生物碎屑灰岩储集层为例,依据压汞毛管曲线形态及其变化的拐点位置,确定了粗、中、细、微孔喉4类组分的分类标准,并转化为核磁共振横向弛豫时间标准。基于核磁共振测井资料精细计算了4类孔径组分的占比,根据其对渗透率的不同贡献,建立了基于多组分孔隙分量组合的核磁共振渗透率计算新模型。通过区块应用对比,新模型的计算精度明显高于传统方法。图14表4参15

本文引用格式

韩玉娇 , 周灿灿 , 范宜仁 , 李潮流 , 袁超 , 丛云海 . 基于孔径组分的核磁共振测井渗透率计算新方法——以中东A油田生物碎屑灰岩储集层为例[J]. 石油勘探与开发, 2018 , 45(1) : 170 -178 . DOI: 10.11698/PED.2018.01.19

Abstract

It is difficult to accurately obtain the permeability of complex lithologic reservoirs using conventional methods because they have diverse pore structures and complex seepage mechanisms. Based on in-depth analysis of the limitation of classical nuclear magnetic resonance (NMR) permeability calculation models, and the understanding that the pore structure and porosity are the main controlling factors of permeability, this study provides a new permeability calculation method involving classifying pore sizes by using NMR T2 spectrum first and then calculating permeability of different sizes of pores. Based on this idea, taking the bioclastic limestone reservoir in the A oilfield of Mid-East as an example, the classification criterion of four kinds of pore sizes, coarse, medium, fine and micro throat, was established and transformed into NMR T2 standard based on shapes and turning points of mercury intrusion capillary pressure curves. Then the proportions of the four kinds of pore sizes were obtained precisely based on the NMR logging data. A new NMR permeability calculation model of multicomponent pores combinations was established based on the contributions of pores in different sizes. The new method has been used in different blocks. The results show that the new method is more accurate than the traditional ones.

参考文献

[1] CHEHRAZI A, REZAEE R. A systematic method for permeability prediction: A petro-facies approach[J]. Journal of Petroleum Science and Engineering, 2012, 82/83(2): 1-16.
[2] 王新民, 郭彦如, 付金华, 等. 鄂尔多斯盆地延长组长 8 段相对高孔渗砂岩储集层的控制因素分析[J]. 石油勘探与开发, 2005, 32(2): 35-38.
WANG Xinmin, GUO Yanru, FU Jinhua, et al. Control factors for forming higher porosity and permeability sand stone reservoirs in Chang 8 member of Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2005, 32(2): 35-38.
[3] 肖佃师, 卢双舫, 陆正元, 等. 联合核磁共振和恒速压汞方法测定致密砂岩孔喉结构[J]. 石油勘探与开发, 2016, 43(6): 961-970.
XIAO Dianshi, LU Shuangfang, LU Zhengyuan, et al. Combining nuclear magnetic resonance and rate-controlled porosimetry to probe the pore-throat structure of tight sandstones[J]. Petroleum Exploration and Development, 2016, 43(6): 961-970.
[4] WEI D F, LIU X P, HU X X, et al. Estimation of permeability from NMR logs based on formation classification method in tight gas sands[J]. Acta Geophysica, 2015, 63(5): 1316-1338.
[5] DUNN K J, BERGMAN D J, LATORRACA G A. Nuclear magnetic resonance: Petrophysical and logging application[M]. Amsterdam: Elsevier, 2002.
[6] COATES G R, XIAO L Z, PRIMMER M G. NMR logging principles and applications[M]. Houston: Gulf Publishing Company, 2000.
[7] 肖立志. 核磁共振成像测井与岩石核磁共振及其应用[M]. 北京: 科学出版社, 1998.
XIAO Lizhi. The technology and application of magnetic resonance imaging logging and rock NMR[M]. Beijing: Science Press, 1998.
[8] 肖亮, 刘晓鹏, 毛志强. 结合NMR和毛管压力资料计算储层渗透率的方法[J]. 石油学报, 2009, 30(1): 100-103.
XIAO Liang, LIU Xiaopeng, MAO Zhiqiang. A computation method for reservoir permeability by combining NMR log and capillary pressure data[J]. Acta Petrolei Sinica, 2009, 30(1): 100-103.
[9] 张丽华, 左义侨, 鞠东阳, 等. 用核磁T2谱数据计算复杂孔隙结构岩石的渗透率[J]. 国外测井技术, 2017, 38(1): 10-12.
ZHANG Lihua, ZUO Yiqiao, JU Dongyang, et al. Calculation of permeability of rock with complex pore structure by using NMR T2 spectrum data[J]. World Well Logging Technology, 2017, 38(1): 10-12.
[10] 徐风, 白松涛, 赵建斌, 等. 一种基于孔隙分量组合下的渗透率计算方法[J]. 石油天然气学报, 2013, 35(11): 76-80, 93.
XU Feng, BAI Songtao, ZHAO Jianbin, et al. A method of calculating permeability based on combination of pore components[J]. Journal of Oil and Gas Technology, 2013, 35(11): 76-80, 93.
[11] 肖忠祥, 肖亮. 基于核磁共振测井和毛管压力的储层渗透率计算方法[J]. 原子能科学技术, 2008, 42(10): 868-871.
XIAO Zhongxiang, XIAO Liang. Method to calculate reservoir permeability using nuclear magnetic resonance logging and capillary pressure data[J]. Atomic Energy Science and Technology, 2008, 42(10): 868-871.
[12] 卢文东, 肖立志, 李伟, 等. 核磁共振测井在低孔低渗储层渗透率计算中的应用[J]. 中国海上油气, 2007, 19(2): 103-106.
LU Wendong, XIAO Lizhi, LI Wei, et al. An application of NMR logging to calculating permeability in low porosity and low permeability reservoir[J]. China Offshore and Gas, 2007, 19(2): 103-106.
[13] TIAB D, DONALDSON E G. Petrophysics: Theory and practice of measuring reservoir rock and transport properties[M]. Houston: Gulf Professional Publishing, 2015.
[14] 冯程, 石玉江, 郝建飞, 等. 低渗透复杂润湿性储集层核磁共振特征[J]. 石油勘探与开发, 2017, 44(2): 252-257.
FENG Cheng, SHI Yujiang, HAO Jianfei, et al. Nuclear magnetic resonance features of low-permeability reservoirs with complex wettability[J]. Petroleum Exploration and Development, 2017, 44(2): 252-257.
[15] HOFMAN J, SLIJKERMAIL W, LOOYESTIJN W, et al. Constructing capillary pressure curve from NMR log data in the presence of hydrocarbons[R]. Oslo, Norway: SPWLA 40 th Annual Logging Symposium, 1999.
文章导航

/