[1] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2): 166-178.
ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: Characteristics, challenges and prospects (II)[J]. Petroleum Exploration and Development, 2016, 43 (2): 166-178.
[2] 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653.
ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
[3] 左罗, 熊伟, 郭为, 等. 页岩气赋存力学机制[J]. 新疆石油地质, 2014, 35(2): 32-36.
ZUO Luo, XIONG Wei, GUO Wei, et al. The mechanism of occurrence state of shale gas[J]. Xinjiang Petroleum Geology, 2014, 35(2): 32-36.
[4] 赵文智, 李建忠, 杨涛, 等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发, 2016, 43(4): 499-510.
ZHAO Wenzhi, LI Jianzhong, YANG Tao, et al. Geological difference and its significance of marine shale gases in South China [J]. Petroleum Exploration and Development, 2016, 43(4): 499-510.
[5] 郭为, 熊伟, 高树生, 等. 温度对页岩等温吸附/解吸特征影响[J]. 石油勘探与开发, 2013, 40(4): 101-105.
GUO Wei, XIONG Wei, GAO Shusheng, et al. The influence of temperature of isothermal adsorption/desorption characteristics of shale gas[J]. Petroleum Exploration and Development, 2013, 40(4): 101-105.
[6] 熊伟, 郭为, 刘洪林, 等. 页岩的储层特征以及等温吸附特征[J]. 天然气工业, 2012, 32(1): 113-116.
XIONG Wei, GUO Wei, LIU Honglin, et al. Shale reservoir characteristics and isothermal adsorption properties[J]. Natural Gas Industry, 2012, 32(1): 113-116.
[7] YUAN W, PAN Z, LI X, et al. Experimental study and modeling of methane adsorption and diffusion in shale[J]. Fuel, 2014, 117: 509-519.
[8] 腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44(1): 69-78.
TENGER Borjigin, SHEN Baojian, YU Lingjie, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 69-78.
[9] GASPARIK M, GHANIZADEH A, BERTIER P, et al. High-pressure methane sorption isotherms of black shales from the Netherlands[J]. Energy & Fuels, 2012, 26(8): 4995-5004.
[10] GASPARIK M, GENSTERBLUM Y, GHANIZADEH A, et al. High-pressure high-temperature methane sorption measurements on Carbonaceous shales by the manometric method experimental and data evaluation considerations for improved accuracy[R]. SPE 174543, 2015.
[11] MERKEL A, FINK R, LITTKE R. High pressure methane sorption characteristics of lacustrine shales from the Midland Valley Basin, Scotland[J]. Fuel, 2016, 182: 361-372.
[12] REXER T F T, BENHAM M J, APLIN A C, et al. Methane adsorption on shale under simulated geological temperature and pressure conditions[J]. Energy & Fuels, 2013, 27(1): 3099-3109.
[13] 赵天逸, 宁正福, 曾彦. 页岩与煤岩等温吸附模型对比分析[J]. 新疆石油地质, 2014, 35(3): 319-323.
ZHAO Tianyi, NING Zhengfu, ZENG Yan. Comparative analysis of isothermal adsorption models for shale and coals[J]. Xinjiang Petroleum Geology, 2014, 35(3): 319-323.
[14] 李相方, 蒲云超, 孙长宇, 等. 煤层气与页岩气吸附/解吸的理论再认识[J]. 石油学报, 2014, 35(6): 1113-1129.
LI Xiangfang, PU Yunchao, SUN Changyu, et al. Recognition of absorption/desorption theory in coalbed methane reservoir and shale gas reservoir[J]. Acta Petrolei Sinica, 2014, 35(6): 1113-1129.
[15] SINGH H, JAVADPOUR F. Langmuir slip-Langmuir sorption permeability model of shale[J]. Fuel, 2016, 164: 28-37.
[16] 侯吉瑞, 赵凤兰. 界面化学及其在EOR中的应用[M]. 北京: 科学出版社, 2014: 53-56.
HOU Jirui, ZHAO Fenglan. Interface chemistry and its application in EOR[M]. Beijing: Science Press, 2014: 53-56.
[17] ZUO L. A new method to calculate the absolute amount of high-pressure adsorption of supercritical fluid[J]. Iranian Journal of Chemistry & Chemical Engineering, 2015, 34(2): 61-71.
[18] 周尚文, 王红岩, 薛华庆, 等. 页岩过剩吸附量与绝对吸附量的差异及页岩气储量计算新方法[J]. 天然气工业, 2016, 36(11): 12-20.
ZHOU Shangwen, WANG Hongyan, XUE Huaqing, et al. Difference between excess and absolute adsorption capacity of shale and a new shale gas reserve calculation method[J]. Natural Gas Industry, 2016, 36(11): 12-20.
[19] ZUO L, WANG Y, GUO W, et al. Methane adsorption on shale insights from experiments and a simplified Local Density Model[J]. Adsorption Science & Technology, 2014, 32(7): 535-556.
[20] 张庆玲. 页岩容量法等温吸附实验中异常现象分析[J]. 煤田地质与勘探, 2015, 43(5): 31-33.
ZHANG Qingling. The analysis of abnormal phenomena in shale isothermal absorption volumetric test[J]. Coal Geology & Exploration, 2015, 43(5): 31-33.
[21] CHAREONSUPPANIMIT P, MOHAMMAD S A, ROBINSON R L, Jr, et al. High-pressure adsorption of gases on shales: Measurements and modeling[J]. International Journal of Coal Geology, 2012, 95(2): 34-46.
[22] LIU Y, ZHU Y, LI W, et al. Molecular simulation of methane adsorption in shale based on grand canonical Monte Carlo method and pore size distribution[J]. Journal of Natural Gas Science and Engineering, 2016, 30: 119-126.
[23] AMBROSE R J, HARTMAN R C, CAMPOS M D, et al. New pore-scale considerations for shale gas in place calculations[R]. SPE 131772, 2010.
[24] 左罗, 王玉普, 熊伟, 等. 页岩含气量计算新方法[J]. 石油学报, 2015, 36(4): 469-474.
ZUO Luo, WANG Yupu, XIONG Wei, et al. A new method to calculate the shale gas content[J]. Acta Petrolei Sinica, 2015, 36(4): 469-474.
[25] 薛冰, 张金川, 杨超, 等. 页岩含气量理论图版[J]. 石油与天然气地质, 2015, 36(2): 339-346.
XUE Bing, ZHANG Jinchuan, YANG Chao, et al. Theoretical chart of shale gas content[J]. Oil & Gas Geology, 2015, 36(2): 339-346.