油气田开发

页岩高压等温吸附曲线及气井生产动态特征实验

  • 端祥刚 ,
  • 胡志明 ,
  • 高树生 ,
  • 沈瑞 ,
  • 刘华勋 ,
  • 常进 ,
  • 王霖
展开
  • 1. 中国石油勘探开发研究院,河北廊坊 065007
    2. 中国科学院大学渗流流体力学研究所,河北廊坊 065007
端祥刚(1987-),男,安徽宿州人,博士,中国石油勘探开发研究院工程师,主要从事非常规油气渗流研究工作。地址:河北省廊坊市44号信箱,中国石油勘探开发研究院渗流流体力学研究所,邮政编码:065007。E-mail: duanxg69@petrochina.com.cn

收稿日期: 2017-07-05

  修回日期: 2017-12-23

  网络出版日期: 2018-01-16

基金资助

国家科技重大专项(2017ZX05037-001); 国家“十三五”示范工程(2016ZX05062-002-001)

Shale high pressure isothermal adsorption curve and the production dynamic experiments of gas well

  • DUAN Xianggang ,
  • HU Zhiming ,
  • GAO Shusheng ,
  • SHEN Rui ,
  • LIU Huaxun ,
  • CHANG Jin ,
  • WANG Lin
Expand
  • 1. PetroChina Research Institute of Petroleum Exploration and Development, Langfang 065007, China
    2. Institute of Porous Flow & Fluid Mechanics, University of Chinese Academy of Sciences, Langfang 065007, China;

Received date: 2017-07-05

  Revised date: 2017-12-23

  Online published: 2018-01-16

摘要

选取四川盆地长宁—威远地区龙马溪组页岩储集层样品,采用高压等温吸附仪开展高压等温吸附曲线测试,运用自主研发页岩气流固耦合实验系统开展了单岩心对比和多岩心串联气井衰竭开发物理模拟实验;在总结吸附、解吸规律基础上,建立了高压等温吸附模型,修正了含气量计算方法,明确吸附气动用规律。研究表明,页岩高压条件下的等温吸附规律与常规低压下吸附规律不同,高压等温吸附曲线随压力变化存在最大过剩吸附量,对应压力为临界解吸压力。高压等温吸附曲线可用于评价页岩吸附气量及吸附气动用程度;高压等温吸附模型能够拟合和表征页岩高压等温吸附规律;修正后的含气量计算方法,可以更客观评估含气量与吸附气比例,是储量评估和产量递减分析的理论基础;吸附气动用程度与压力密切相关,储集层压力低于临界解吸压力,吸附气才能有效动用;气井生产过程中,近井地带压力下降幅度大,吸附气动用程度高,远离井筒,吸附气动用程度低或不动用。图14表2参25

本文引用格式

端祥刚 , 胡志明 , 高树生 , 沈瑞 , 刘华勋 , 常进 , 王霖 . 页岩高压等温吸附曲线及气井生产动态特征实验[J]. 石油勘探与开发, 2018 , 45(1) : 119 -127 . DOI: 10.11698/PED.2018.01.12

Abstract

The high pressure static adsorption curves of shale samples from Silurian Changning-Weiyuan Longmaxi Formation were tested by using high pressure isothermal adsorption equipment. The physical modeling of depletion production was tested on single cores and multi-core series by using self-developed shale gas flow solid coupling experiment system. The adsorption and desorption laws were summarized and a high pressure isothermal adsorption model was established. The calculation formula of gas content was corrected, and the producing law of adsorption gas was determined. The study results show that the isothermal adsorption law of the shale reservoir under high pressure was different from the conventional low pressure. The high pressure isothermal adsorption curve had the maximum value in excess adsorption with pressure change, and the corresponding pressure was the critical desorption pressure. The high pressure isothermal curve can be used to evaluate the amount of adsorbed gas and the producing degree of adsorption gas. The high pressure isothermal adsorption model can fit and characterize the high pressure isothermal adsorption law of shale. The modified gas content calculation method can evaluate the gas content and the proportion of adsorbed gas more objectively, and is the theoretical basis of reserve assessment and production decline analysis. The producing degree of adsorption gas is closely related to the pressure, only when the reservoir pressure is lower than the critical desorption pressure, the adsorption gas can be produced effectively. In the process of gas well production, the pressure drop in the near-well area is large, the producing degree of adsorption gas is high, the adsorption gas is low in producing degree, or not produced at all, away from the wellbore.

参考文献

[1] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2): 166-178.
ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: Characteristics, challenges and prospects (II)[J]. Petroleum Exploration and Development, 2016, 43 (2): 166-178.
[2] 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653.
ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
[3] 左罗, 熊伟, 郭为, 等. 页岩气赋存力学机制[J]. 新疆石油地质, 2014, 35(2): 32-36.
ZUO Luo, XIONG Wei, GUO Wei, et al. The mechanism of occurrence state of shale gas[J]. Xinjiang Petroleum Geology, 2014, 35(2): 32-36.
[4] 赵文智, 李建忠, 杨涛, 等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发, 2016, 43(4): 499-510.
ZHAO Wenzhi, LI Jianzhong, YANG Tao, et al. Geological difference and its significance of marine shale gases in South China [J]. Petroleum Exploration and Development, 2016, 43(4): 499-510.
[5] 郭为, 熊伟, 高树生, 等. 温度对页岩等温吸附/解吸特征影响[J]. 石油勘探与开发, 2013, 40(4): 101-105.
GUO Wei, XIONG Wei, GAO Shusheng, et al. The influence of temperature of isothermal adsorption/desorption characteristics of shale gas[J]. Petroleum Exploration and Development, 2013, 40(4): 101-105.
[6] 熊伟, 郭为, 刘洪林, 等. 页岩的储层特征以及等温吸附特征[J]. 天然气工业, 2012, 32(1): 113-116.
XIONG Wei, GUO Wei, LIU Honglin, et al. Shale reservoir characteristics and isothermal adsorption properties[J]. Natural Gas Industry, 2012, 32(1): 113-116.
[7] YUAN W, PAN Z, LI X, et al. Experimental study and modeling of methane adsorption and diffusion in shale[J]. Fuel, 2014, 117: 509-519.
[8] 腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44(1): 69-78.
TENGER Borjigin, SHEN Baojian, YU Lingjie, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 69-78.
[9] GASPARIK M, GHANIZADEH A, BERTIER P, et al. High-pressure methane sorption isotherms of black shales from the Netherlands[J]. Energy & Fuels, 2012, 26(8): 4995-5004.
[10] GASPARIK M, GENSTERBLUM Y, GHANIZADEH A, et al. High-pressure high-temperature methane sorption measurements on Carbonaceous shales by the manometric method experimental and data evaluation considerations for improved accuracy[R]. SPE 174543, 2015.
[11] MERKEL A, FINK R, LITTKE R. High pressure methane sorption characteristics of lacustrine shales from the Midland Valley Basin, Scotland[J]. Fuel, 2016, 182: 361-372.
[12] REXER T F T, BENHAM M J, APLIN A C, et al. Methane adsorption on shale under simulated geological temperature and pressure conditions[J]. Energy & Fuels, 2013, 27(1): 3099-3109.
[13] 赵天逸, 宁正福, 曾彦. 页岩与煤岩等温吸附模型对比分析[J]. 新疆石油地质, 2014, 35(3): 319-323.
ZHAO Tianyi, NING Zhengfu, ZENG Yan. Comparative analysis of isothermal adsorption models for shale and coals[J]. Xinjiang Petroleum Geology, 2014, 35(3): 319-323.
[14] 李相方, 蒲云超, 孙长宇, 等. 煤层气与页岩气吸附/解吸的理论再认识[J]. 石油学报, 2014, 35(6): 1113-1129.
LI Xiangfang, PU Yunchao, SUN Changyu, et al. Recognition of absorption/desorption theory in coalbed methane reservoir and shale gas reservoir[J]. Acta Petrolei Sinica, 2014, 35(6): 1113-1129.
[15] SINGH H, JAVADPOUR F. Langmuir slip-Langmuir sorption permeability model of shale[J]. Fuel, 2016, 164: 28-37.
[16] 侯吉瑞, 赵凤兰. 界面化学及其在EOR中的应用[M]. 北京: 科学出版社, 2014: 53-56.
HOU Jirui, ZHAO Fenglan. Interface chemistry and its application in EOR[M]. Beijing: Science Press, 2014: 53-56.
[17] ZUO L. A new method to calculate the absolute amount of high-pressure adsorption of supercritical fluid[J]. Iranian Journal of Chemistry & Chemical Engineering, 2015, 34(2): 61-71.
[18] 周尚文, 王红岩, 薛华庆, 等. 页岩过剩吸附量与绝对吸附量的差异及页岩气储量计算新方法[J]. 天然气工业, 2016, 36(11): 12-20.
ZHOU Shangwen, WANG Hongyan, XUE Huaqing, et al. Difference between excess and absolute adsorption capacity of shale and a new shale gas reserve calculation method[J]. Natural Gas Industry, 2016, 36(11): 12-20.
[19] ZUO L, WANG Y, GUO W, et al. Methane adsorption on shale insights from experiments and a simplified Local Density Model[J]. Adsorption Science & Technology, 2014, 32(7): 535-556.
[20] 张庆玲. 页岩容量法等温吸附实验中异常现象分析[J]. 煤田地质与勘探, 2015, 43(5): 31-33.
ZHANG Qingling. The analysis of abnormal phenomena in shale isothermal absorption volumetric test[J]. Coal Geology & Exploration, 2015, 43(5): 31-33.
[21] CHAREONSUPPANIMIT P, MOHAMMAD S A, ROBINSON R L, Jr, et al. High-pressure adsorption of gases on shales: Measurements and modeling[J]. International Journal of Coal Geology, 2012, 95(2): 34-46.
[22] LIU Y, ZHU Y, LI W, et al. Molecular simulation of methane adsorption in shale based on grand canonical Monte Carlo method and pore size distribution[J]. Journal of Natural Gas Science and Engineering, 2016, 30: 119-126.
[23] AMBROSE R J, HARTMAN R C, CAMPOS M D, et al. New pore-scale considerations for shale gas in place calculations[R]. SPE 131772, 2010.
[24] 左罗, 王玉普, 熊伟, 等. 页岩含气量计算新方法[J]. 石油学报, 2015, 36(4): 469-474.
ZUO Luo, WANG Yupu, XIONG Wei, et al. A new method to calculate the shale gas content[J]. Acta Petrolei Sinica, 2015, 36(4): 469-474.
[25] 薛冰, 张金川, 杨超, 等. 页岩含气量理论图版[J]. 石油与天然气地质, 2015, 36(2): 339-346.
XUE Bing, ZHANG Jinchuan, YANG Chao, et al. Theoretical chart of shale gas content[J]. Oil & Gas Geology, 2015, 36(2): 339-346.
文章导航

/