石油工程

天然气水合物开采井防砂充填层砾石尺寸设计方法

  • 李彦龙 ,
  • 胡高伟 ,
  • 刘昌岭 ,
  • 吴能友 ,
  • 陈强 ,
  • 刘乐乐 ,
  • 李承峰
展开
  • 1. 青岛海洋地质研究所 国土资源部天然气水合物重点实验室,山东青岛 266071;
    2. 青岛海洋科学与技术国家实验室 海洋矿产资源评价与探测技术功能实验室,山东青岛 266071
李彦龙(1989-),男,甘肃定西人,硕士,中国地质调查局青岛海洋地质研究所研究实习员,主要从事海域天然气水合物开采相关的力学及出砂-防砂问题研究。地址:山东省青岛市市南区福州南路62号,青岛海洋地质研究所,邮政编码:266071。E-mail:liyanlongupc@163.com 联系作者简介:胡高伟(1982-),男,湖北仙桃人,博士,中国地质调查局青岛海洋地质研究所副研究员,主要从事海域天然气水合物地球物理与试采工程准备相关的研究。地址:山东省青岛市市南区福州南路62号,青岛海洋地质研究所,邮政编码:266071。E-mail:hgw-623@163.com

收稿日期: 2017-06-20

  修回日期: 2017-08-31

  网络出版日期: 2017-11-24

基金资助

国家自然科学基金(41606078); 国家重点研发计划深海专项(2017YFC0307600); 青岛海洋科学与技术国家实验室开放基金(QNLM2016ORP0203,QNLM2016ORP0207)

Gravel sizing method for sand control packing in hydrate production test wells

  • LI Yanlong ,
  • HU Gaowei ,
  • LIU Changling ,
  • WU Nengyou ,
  • CHEN Qiang ,
  • LIU Lele ,
  • LI Chengfeng
Expand
  • 1. Key Laboratory of Gas Hydrate, Ministry of Land and Resources, Qingdao Institute of Marine Geology, Qingdao 266071, China;
    2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China

Received date: 2017-06-20

  Revised date: 2017-08-31

  Online published: 2017-11-24

摘要

针对水合物储集层流体抽取法开采过程中面临的出砂问题,提出了针对黏土质粉砂型水合物储集层的“防粗疏细”式防砂充填层砾石尺寸设计方法,并以中国南海神狐海域X站位为例进行了具体分析。以X站位为例,分析了水合物储集层地层砂基本特性,对地层砂粗、细组分进行划分,并分别计算了疏通细组分和阻挡粗组分所需的防砂充填层砾石尺寸范围,通过求解两者的交集来确定最佳砾石尺寸。研究表明,X站位水合物储集层为分选性、均匀性极差且黏土含量较高的粉砂质储集层,上、下部储集层防砂充填层最佳砾石尺寸设计结果分别为143~215 μm和240~360 μm。在现场施工无法严格满足分层防砂要求的情况下,为了兼顾上、下部储集层,在满足充填强度的前提下,推荐X站位防砂充填层砾石尺寸为215~360 μm。图3表2参22

本文引用格式

李彦龙 , 胡高伟 , 刘昌岭 , 吴能友 , 陈强 , 刘乐乐 , 李承峰 . 天然气水合物开采井防砂充填层砾石尺寸设计方法[J]. 石油勘探与开发, 2017 , 44(6) : 961 -966 . DOI: 10.11698/PED.2017.06.14

Abstract

To deal with sand production problems during the process of producing natural gas from hydrate-bearing sediments (HBS) using reservoir-fluid extraction method, a new gravel sizing method for sand control packing named “Hold coarse while eliminate fine particle (HC & EF method)” was developed for the clayey hydrate-bearing formations. Site X, in Shenhu area, South China Sea was taken as an example to describe detailed gravel sizing procedure. On the basis of analyzing basic particle size distribution (PSD) characteristics of HBS at Site X, the formation sand was divided into two components, which are coarse component and fine component. The gravel sizes for retaining coarse component and eliminate fine component were calculated, respectively. Finally, intersection of these two gravel sizes was taken as the proper gravel size for Site X. The research results show that the formation at Site X is clayey sand with poor sorting and uniformity, proper gravel size for upper segment packing is 143-215 μm, while that for lower segment packing is 240-360 μm. In consideration of the difficulty of layered sand control operation on offshore platform, proper gravel packing size for Site X is recommended as 215-360 μm.

参考文献

[1] WU Nengyou, ZHANG Haiqi, YANG Shengxiong, et al. Gas hydrate system of Shenhu area, Northern South China Sea: Geochemical results[J]. Journal of Geological Research, 2011, 2011: 1-10.
[2] ZHANG G, LIANG J, LU J, et al. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea[J]. Marine & Petroleum Geology, 2015, 67: 356-367.
[3] 郭翔宇, 刘飞. 我国宣布在南海神狐海域“可燃冰”试采成功[EB/OL]. (2017-05-18)[2017-06-01]. http://china.cnr.cn/xwwgf/20170518/ t20170518_523762235.shtml.
GUO Xiangyu, LIU Fei. China announced combustible ice test success in the Shenhu area, South China Sea[EB/OL]. (2017-05-18)[2017- 06-01]. http://china.cnr.cn/xwwgf/20170518/t20170518_523762235. shtml.
[4] 陈惠玲, 朱夏. 20年追赶60天突破: 我国海域可燃冰勘查试采“赶超记”[EB/OL]. (2017-07-17)[2017-07-26]. http://www.cgs.gov.cn/ ddztt/jqthd/trqshw/zxbdshw/201707/t20170717_435792.html.
CHEN Huiling, ZHU Xia. 20 years to catch up and 60 days to break: Catching up recording of China’s coastal combustible ice exploration test[EB/OL]. (2017-07-17)[2017-07-26]. http://www.cgs.gov.cn/ddztt/ jqthd/trqshw/zxbdshw/201707/t20170717_435792.html.
[5] 李彦龙, 刘昌岭, 刘乐乐. 含水合物沉积物损伤统计本构模型及其参数确定方法[J]. 石油学报, 2016, 37(10): 1273-1279.
LI Yanlong, LIU Changling, LIU Lele. Damage statistical constitutive model of hydrate-bearing sediments and the determination method of parameters[J]. Acta Petrolei Sinica, 2016, 37(10): 1273-1279.
[6] JUNG J W, JANG J, SANTAMARINA J C, et al. Gas production from hydrate-bearing sediments: The role of fine particles[J]. Energy & Fuels, 2012, 26(1): 480-487.
[7] YOSHIHIRO T, DUNCAN M W, HAY W J, et al. Deepwater methane hydrate gravel packing completion results and challenges[R]. OTC 25330-MS, 2014.
[8] 李彦龙, 刘乐乐, 刘昌岭, 等. 天然气水合物开采过程中的出砂与防砂问题[J]. 海洋地质前沿, 2016, 32(7): 36-43.
LI Yanlong, LIU Lele, LIU Changling, et al. Sanding prediction and sand-control technology in hydrate exploitation: A review and discussion[J]. Marine Geology Frontiers, 2016, 32(7): 36-43.
[9] LIU Changling, MENG Qingguo, HU Gaowei, et al. Characterization of hydrate-bearing sediments recovered from the Shenhu area of the South China Sea[J]. Interpretation, 2017, 5(3): 13-23.
[10] 邓金根, 李萍, 周建良, 等. 中国海上疏松砂岩适度出砂井防砂方式优选[J]. 石油学报, 2012, 33(4): 676-680.
DENG Jingen, LI Ping, ZHOU Jianliang, et al. Sand control optimization applied to moderately sanding wells in offshore loose sandstone reservoirs[J]. Acta Petrolei Sinica, 2012, 33(4): 676-680.
[11] 邓金根, 李萍, 王利华, 等. 渤海湾地区适度防砂技术防砂方式优选[J]. 石油钻采工艺, 2011, 33(1):98-101.
DENG Jingen, LI Ping, WANG Lihua, et al. The optimization of sand control method for moderate sand control technique application in Bohai Bay[J]. Oil Drilling & Production Technology, 2011, 33(1): 98-101.
[12] 王利华, 邓金根, 周建良, 等. 适度出砂开采标准金属网布优质筛管防砂参数设计实验研究[J]. 中国海上油气, 2011, 23(2): 107-110.
WANG Lihua, DENG Jingen, ZHOU Jianliang, et al. Experimental study on premium screen mesh opening design for reasonable sand control[J]. China Offshore Oil and Gas, 2011, 23(2): 107-110.
[13] 胡才志, 裴柏林, 李相方, 等. 砾石充填井堵塞机理实验研究[J]. 石油大学学报(自然科学版), 2004, 28(3): 40-42.
HU Caizhi, PEI Bolin, LI Xiangfang, et al. Laboratory research on plugging mechanism in gravel packed well[J]. Journal of the University of Petroleum, China (Edition of Natural Science), 2004, 28(3): 40-42.
[14] VALDES J, SANTAMARINA J. Particle clogging in radial flow: Microscale mechanisms[J]. SPE Journal, 2006, 11(11): 193-198.
[15] 张伟, 梁金强, 陆敬安, 等. 中国南海北部神狐海域高饱和度天然气水合物成藏特征及机制[J]. 石油勘探与开发, 2017, 44(5): 670-680.
ZHANG Wei, LIANG Jinqiang, LU Jing’an, et al. Accumulation features and mechanisms of high saturation natural gas hydrate in Shenhu Area, northern South China Sea[J]. Petroleum Exploration and Development, 2017, 44(5): 670-680.
[16] 董长银, 张清华, 高凯歌, 等. 机械筛管挡砂精度优化实验及设计模型[J]. 石油勘探与开发, 2016, 43(6): 991-996.
DONG Changyin, ZHANG Qinghua, GAO Kaige, et al. Screen sand retaining precision optimization experiment and a new empirical design model[J]. Petroleum Exploration and Development, 2016, 43(6): 991-996.
[17] OYENEYIN B. Developments in petroleum science[M]. Amsterdam: Elsevier, 2015: 191-223.
[18] 董长银. 油气井防砂理论与技术[M]. 东营: 中国石油大学出版社, 2012: 91-97.
DONG Changyin. Sand control theories and technologies in oil and gas wells[M]. Dongying: Press of China University of Petroleum, 2012: 91-97.
[19] MARKESTAD P, CHRISTIE O, ESPEDAL A, et al. Selection of screen slot width to prevent plugging and sand production[R]. SPE 31087, 1995.
[20] SAUCIER R J. Consideration in gravel pack design[J]. Journal of Petroleum Technology, 1974, 26(2): 205-212.
[21] 董长银, 贾碧霞, 刘春苗, 等. 机械防砂筛管挡砂介质堵塞机制及堵塞规律试验[J]. 中国石油大学学报(自然科学版), 2011, 35(5): 82-88.
DONG Changyin, JIA Bixia, LIU Chunmiao, et al. Blocking mechanism and blocking laws experiments of sand retention media in mechanical screens[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(5): 82-88.
[22] 马帅, 熊友明, 于东, 等. 海上高产气田防砂挡砂精度设计研究[J]. 石油钻采工艺, 2013, 35(6): 48-51.
MA Shuai, XIONG Youming, YU Dong, et al. Research on precision design of sand control on high yield offshore gas field[J]. Oil Drilling & Production Technology, 2013, 35(6): 48-51.
文章导航

/