依托长庆、大庆和大港等油田进行的减氧空气驱试验,开展了减氧空气驱机理、爆炸极限、腐蚀防控等实验,明确了减氧空气驱爆炸极限、减氧界限、腐蚀防控条件等技术问题。研究表明:油藏温度大于等于120 ℃时,氧气与原油反应剧烈,可充分利用氧气的低温氧化作用,直接进行空气驱提高采收率;油藏温度小于120 ℃时,氧气消耗极少,放热量少,难以产生热效应,适合进行减氧空气驱,充分利用N2为主的空气非混相驱提高采收率。减氧空气驱适用于低渗透、注水开发“双高”、高温高盐3类油藏,为防止爆炸,确保减氧空气驱技术安全可控,临界氧含量可控制在10%以内;空气减氧后,管柱氧腐蚀有所减缓;无水条件下地面管线和注入井无需考虑氧腐蚀问题,有水时可采用特殊管材、特殊管柱结构或加入缓蚀剂等方法来降低腐蚀速度。空气/减氧空气是低成本的驱替介质,可用于对低渗透等特殊条件油藏实施能量补充及吞吐、驱替等方式开发,是未来20年具有发展潜力的战略性技术。图6表4参14
廖广志
,
杨怀军
,
蒋有伟
,
任韶然
,
李党国
,
王连刚
,
王正茂
,
王伯军
,
刘卫东
. 减氧空气驱适用范围及氧含量界限[J]. 石油勘探与开发, 2018
, 45(1)
: 105
-110
.
DOI: 10.11698/PED.2018.01.10
The mechanisms of oxygen-reduced air flooding (ORAF) and the explosion limit and the corrosion control approaches were studied based on the pilots of oxygen-reduced air flooding (ORAF) in Dagang, Changqing and Daqing oil fields in China. On the foundation of indoor investigations and pilots, the explosion limits, oxygen reduction limits and corrosion control approaches were clarified. When the temperature of reservoir is equal to and higher than 120 ℃, there is a violent reaction between oxygen and crude oil, that means the effect of low temperature oxidation would be fully taken use of to enhance oil recovery by air flooding directly; nitrogen dominated immiscible flooding with oxygen-reduced air should be applied in cases where reservoir temperature is below 120 ℃ with little oxygen consumption and little heat generated. The oxygen-reduced air flooding is suitable for 3 types of reservoirs: low permeability reservoir, water flooding development reservoir of high water-cut and high temperature and high salinity reservoir. In the process of development, in order to ensure safety, the oxygen reduction limits should be controlled fewer than 10%, while oxygen-reduced air can obviously reduce the corrosion rate of pipes; The surface pipelines and injection wells don’t need to consider about oxygen corrosion with no water, special materials and structure of pipe or corrosion inhibitor can be applied to the surface pipelines and injection wellbores with water. Air/oxygen-reduced air is a low-cost displacement medium and it could be applied in many special conditions of low permeability reservoir for energy supplement, huff and puff and displacement, that means oxygen-reduced air flooding has become the most potential strategic technology in 20 years.
[1] 谷潇雨, 蒲春生, 黄海, 等. 渗透率对致密砂岩储集层渗吸采油的微观影响机制[J]. 石油勘探与开发, 2017, 44(6): 948-954.
GU Xiaoyu, PU Chunsheng, HUANG Hai, et al. Microcosmic influence of permeability on spontaneous imbibition recovery for tight sandstone reservoirs[J]. Petroleum Exploration and Development, 2017, 44(6): 948-954.
[2] 肖佃师, 卢双舫, 陆正元, 等. 联合核磁共振和恒速压汞方法测定致密砂岩孔喉结构[J]. 石油勘探与开发, 2016, 43(6): 961-970.
XIAO Dianshi, LU Shuangfang, LU Zhengyuan, et al. Combining nuclear magnetic resonance and rate-controlled porosimetry to probe the pore-throat structure of tight sandstones[J]. Petroleum Exploration and Development, 2016, 43(6): 961-970.
[3] KUMAR V K, FASSIHI M R, YANNIMARAS D V. Case history and appraisal of the medicine pole hills unit air injection project[R]. SPE 27792, 1995.
[4] PARRISH D R, POLLOCK C B, NESS N L, et al. A tertiary COFCAW pilot test in the sloss field, Nebraska[J]. Society of Petroleum Engineers, 1974, 26(6): 667-675.
[5] ERICKSON A, LEGERSKI J R, STEECE F V. An appraisal of high pressure air injection (HPAI) or in-situ combustion results from deep, high-temperature, high gravity oil reservoirs[C]. Wyoming: University of Wyoming, 1994.
[6] FASSIHI M R, YANNIMARAS D V, WESTFALL E E. Economics of light oil air injection projects[R]. SPE 35393, 1996.
[7] 任少云. 密闭空间内天然气混合及爆炸传播规律研究[J]. 中国安全生产科学技术, 2016, 12(11): 130-135.
REN Shaoyun. Study on mixing and explosion propagation laws of natural gas in confined space[J]. Journal of Safety Science and Technology, 2016, 12(11): 130-135.
[8] 孙永涛, 程鹏, 马增华, 等. 高温多元热流体注采液中N80钢的腐蚀行为[J]. 腐蚀与防护, 2012, 33(3): 218-221.
SUN Yongtao, CHENG Peng, MA Zenghua, et al. Corrosion behavior of N80 steel in high temperature multi-component thermal fluid for thick oil exploitation[J]. Corrosion & Protection, 2012, 33(3): 218-221.
[9] FASSIHI M R, YANNIMARAS D V, KUMAR V K. Estimation of recovery factor in light-oil air-injection projects[R]. SPE 28733, 1997.
[10] 唐君实, 关文龙, 梁金中, 等. 热重分析仪求取稠油高温氧化动力学参数[J]. 石油学报, 2013, 34(4): 775-779.
TANG Junshi, GUAN Wenlong, LIANG Jinzhong, et al. Determination on high-temperature oxidation kinetic parameters of heavy oils with thermogravimetric analyzer[J]. Acta Petrolei Sinica, 2013, 34(4): 775-779.
[11] KUMAR V K, GUTIERREZ D, MOORE R G, et al. High-pressure air injection and waterflood performance comparison of two adjacent units in Buffalo field[R]. Calgary, Alberta, Canada: The Petroleum Society’s 8th Canadian International Petroleum Conference, 2007.
[12] MONTES A R, GUTIÉRREZ D, MOORE R G, et al. Is high pressure air injection (HPAI) simply a flue-gas flood?[R]. SPE 133206, 2010.
[13] 邓天洲. 油田气处理技术探讨[J]. 石油与天然气化工, 1984(3): 9-17.
DENG Tianzhou. Discussion on casing-head gas treatment technology[J]. Chemical Engineering of Oil and Gas, 1984(3): 9-17.
[14] 国家能源局. 碎屑岩油藏注水水质推荐指标及分析方法: SY/T 5329—2012[S]. 北京: 中国标准出版社, 2012.
The National Energy Administration. Recommended water injection quality index of clastic rock reservoir: SY/T 5329—2012[S]. Beijing: China Standard Press, 2012.