为了准确计算实钻轨迹,提出了井眼轨迹模式定量识别方法,并进行实例分析。随钻测量数据可以提供井斜角、方位角以及工具面角的实测值,据此提出利用工具面角来识别井眼轨迹模式的技术思路。根据导向钻具的定向造斜机理建立了适用所有井眼轨迹的工具面角方程,结合各种井眼轨迹模型的特征参数便可计算工具面角理论值。评价工具面角理论值与实测值之间的误差,可优选出最符合实际的井眼轨迹模型。井眼轨迹模式识别提供了测斜计算方法的定量评价指标和选用依据,可避免主观和随意选用测斜计算方法等问题,从而能提高井眼轨迹的监测精度及可靠性。图1表1参17
In order to accurately calculate drilled trajectories, method of quantitatively recognizing borehole trajectory models was provided, and case analysis was conducted. Because the measurement-while-drilling data provide with measured values of tool-face angle besides inclination angle and azimuth angle, this paper presents the technological approach of recognizing borehole trajectory models based on tool-face angle. A universal tool-face angle equation was established based on the directional deflection mechanism of steerable drilling tools, and it can calculate the tool-face angles with characteristic parameters of various borehole trajectory models. Then, by evaluating the error between the theoretical value and the measured value of tool-face angle, the trajectory model most consistent with the actual well trajectory can be selected. The model recognition of borehole trajectory provides with the quantitative evaluation index and selection basis of survey calculation methods, which can avoid subjectively and randomly selecting the survey calculation method, and consequently improves the monitoring accuracy and reliability of borehole trajectory.
[1] SAMUEL G R, LIU Xiushan. Advanced drilling engineering: Principles and designs[M]. Houston, TX: Gulf Publishing Company, 2009.
[2] 刘修善. 井眼轨道几何学[M]. 北京: 石油工业出版社, 2006.
LIU Xiushan. Geometry of wellbore trajectory[M]. Beijing: Petroleum Industry Press, 2006.
[3] 史鸿祥, 李辉, 郑多明, 等. 基于随钻地震测井的地震导向钻井技术: 以塔里木油田哈拉哈塘区块缝洞型储集体为例[J]. 石油勘探与开发, 2016, 43(4): 662-668.
SHI Hongxiang, LI Hui, ZHENG Duoming, et al. Seismic guided drilling technique based on seismic while drilling (SWD): A case study of fracture-cave reservoirs of Halahatang block, Tarim Oilfield, NW China[J]. Petroleum Exploration and Development, 2016, 43(4): 662-668.
[4] 韩志勇. 井身测斜计算方法的选择问题[J]. 石油钻探技术, 1989, 17(1): 14-17.
HAN Zhiyong. The selection of survey calculation methods[J]. Petroleum Drilling Techniques, 1989, 17(1): 14-17.
[5] 国家能源局. 定向井轨道设计与轨迹计算: SY/T 5435—2012[S]. 北京: 石油工业出版社, 2012.
National Energy Administration. Wellpath planning & trajectory calculation for directional wells: SY/T 5435—2012[S]. Beijing: Petroleum Industry Press, 2012.
[6] 刘修善. 利用工具面角识别井眼轨迹模式的方法: 201510815417.8[P]. 2017-05-31.
LIU Xiushan. The method of recognizing borehole trajectory models based on tool-face angle: 201510815417.8[P]. 2017-05-31.
[7] 刘修善, 王超. 空间圆弧轨迹的解析描述技术[J]. 石油学报, 2014, 35(1): 134-140.
LIU Xiushan, WANG Chao. Analytic description of spatial-arc wellbore trajectory[J]. Acta Petrolei Sinica, 2014, 35(1): 134-140.
[8] 刘修善. 导向钻具定向造斜方程及井眼轨迹控制机制[J]. 石油勘探与开发, 2017, 44(5): 788-793.
LIU Xiushan. Directional deflection equations for steerable drilling tools and the control mechanism of wellbore trajectory[J]. Petroleum Exploration and Development, 2017, 44(5): 788-793.
[9] TAYLOR H L, MASON C M. A systematic approach to well surveying calculations[R]. SPE 3362, 1972.
[10] ZAREMBA W A. Directional survey by the circular arc method[R]. SPE 3664, 1973.
[11] 唐军, 章成广, 张碧星, 等. 基于声波-变密度测井的固井质量评价方法[J]. 石油勘探与开发, 2016, 43(3): 469-475.
TANG Jun, ZHANG Chengguang, ZHANG Bixing, et al. Cement bond quality evaluation based on acoustic variable density logging[J]. Petroleum Exploration and Development, 2016, 43(3): 469-475.
[12] WILSON G J. An improved method for computing directional surveys[J]. Journal of Petroleum Technology, 1968, 20(8): 871-876.
[13] CRAIG J T, RANDALL B V. Directional survey calculations[J]. Petroleum Engineer, 1976, 48(4): 38-54.
[14] CALLAS N P. Computing directional surveys with a helical method[J]. Society of Petroleum Engineers Journal, 1976, 16(6): 327-336.
[15] LIU Xiushan, SHI Zaihong, FAN Sen. Natural parameter method accurately calculates well bore trajectory[J]. Oil & Gas Journal, 1997, 95(4): 90-92.
[16] SCHUH F J. Trajectory equations for constant tool face angle deflections[R]. SPE 23853, 1992.
[17] GUO Boyun, MISKA S, LEE R L. Constant curvature method for planning a 3-D directional well[R]. SPE 24381, 1992.