油气田开发

火烧辅助重力泄油矿场调控技术

  • 关文龙 ,
  • 席长丰 ,
  • 陈龙 ,
  • 木合塔尔 ,
  • 高成国 ,
  • 唐君实 ,
  • 李秋
展开
  • 1. 提高采收率国家重点实验室,北京 100083;
    2. 中国石油新疆油田公司,新疆克拉玛依 834000
关文龙(1970),男,辽宁辽中人,博士,中国石油勘探开发研究院教授级高级工程师,主要从事稠油油藏热采开发研究工作。地址:北京市海淀区学院路20号,中国石油勘探开发研究院热力采油研究所,邮政编码:100083。E-mail: guanwl@petrochina.com.cn

收稿日期: 2017-01-16

  修回日期: 2017-06-28

  网络出版日期: 2017-09-18

基金资助

国家科技重大专项“火烧驱油技术研究与应用”(2011ZX05012-002)

Field control technologies of combustion assisted gravity drainage (CAGD)

  • GUAN Wenlong ,
  • XI Changfeng ,
  • CHEN Long ,
  • Muhetar ,
  • GAO Chengguo ,
  • TANG Junshi ,
  • LI Qiu
Expand
  • 1. State Key Laboratory of Enhanced Oil Recovery, Beijing 100083, China;
    2. PetroChina Xinjiang Oilfield Company, Karamay, 834000, China

Received date: 2017-01-16

  Revised date: 2017-06-28

  Online published: 2017-09-18

摘要

基于火烧辅助重力泄油(CAGD)技术的机理、技术优势和缺陷,研究CAGD矿场调控的目标、策略和方法。CAGD技术充分利用重力作用,让燃烧前缘高温可动油就近流入水平生产井中,使火烧油层开发超稠油油藏成为可能,但在矿场应用过程中易于发生燃烧带前缘单向锥进和火窜。通过室内三维物理模拟实验,并借鉴以往矿场试验的经验,指出平缓上倾的燃烧界面有利于实现连续稳定重力泄油,矿场实践中应以该形状为调控目标;经油藏工程及物质平衡计算,给出了CAGD矿场实践过程中能实现的最大产量和对应的注气速度,对于新疆风城超稠油油藏,CAGD最大目标产量为12.9 m3/d,对应的注气速度为14 048 m3/d。为实现上述调控目标,CAGD生产过程中应保证起火位置在油层中上部,点火初期保持低速注气并缓慢提速,同时控制烟道气产出速度为注气速度90%左右。研究成果应用于新疆风城CAGD先导试验中,取得了较好的开采效果,截至2016年底FH005井组已实现稳定重力泄油400 d,燃烧腔体发育形状、水平井单井产量、空气油比以及原油改质等指标均符合方案预期。图10表1参18

本文引用格式

关文龙 , 席长丰 , 陈龙 , 木合塔尔 , 高成国 , 唐君实 , 李秋 . 火烧辅助重力泄油矿场调控技术[J]. 石油勘探与开发, 2017 , 44(5) : 753 -760 . DOI: 10.11698/PED.2017.05.10

Abstract

The targets, strategies and approaches of the field controlling processes of combustion assisted gravity drainage (CAGD) are discussed based on the research of its mechanisms, advantages and defects. By taking fully advantage of gravity, CAGD process can produce the mobilized oil near the combustion front through the underlying horizontal well, serving as a possible solution for extra-heavy oil production in the Xinjiang oil field. However, unidirectional conning and breakthrough of combustion front are risky to happen during the field application of CAGD. Based on laboratory three-dimensional physical simulation experiments and the experience of former pilots, it is proposed that a gently upward sloping combustion front is beneficial for the steady drainage of mobilized oil and should be the target of CAGD control. Key production parameters like the maximum production rate and corresponding air injection rate during field application. are calculated with reservoir engineering approach and material balance theory. The maximum oil production rate of the CAGD pilot in Block Fengcheng, Xinjiang oil field, is 12.9 m3/d, and the air injection rate is 14 048 m3/d. To maximize the oil productivity and sustain combustion front moving forward steadily, the ignition position should be located at the mid-upper parts of the formation; the air injection rate at the early stage should keep slow and increase gradually; meanwhile, the production rate of flue gas should be 90% of the air injection rate. A pilot of CAGD was initiated in the Xinjiang Fengcheng Field on the basis of those research outcomes. By the end of 2016, Well Group FH005 in the pilot has succeeded in steady production for more than 400 days. Key aspects, involving the shape of combustion chamber, oil production of single horizontal producer, air oil ratio and the degree of oil upgrading are in accordance with what the development plan predicted.

参考文献

[1] 张霞林, 关文龙, 刁长军, 等. 新疆油田红浅1井区火驱开采效果评价[J]. 新疆石油地质, 2015, 36(4): 465-469.
ZHANG Xialin, GUAN Wenlong, DIAO Changjun, et al. Evaluation of recovery effect in Hongqian-1 wellblock by in-situ combustion process in Xinjiang Oilfield[J]. Xinjiang Petroleum Geology, 2015, 36(4): 465-469.
[2] GREAVES M, AL-SHAMALI O. In situ combustion (ISC) process using horizontal wells[J]. Journal of Canadian Petroleum Technology, 1996, 35(4): 49-55.
[3] GREAVES M, REN S R, XIA T X. New air injection technology for IOR operations in light and heavy oil reservoirs[R]. SPE 57295, 1999.
[4] 关文龙, 吴淑红, 梁金中, 等. 从室内实验看火烧辅助重力泄油技术风险[J]. 西南石油大学学报(自然科学版), 2009, 31(4): 67-72.
GUAN Wenlong, WU Shuhong, LIANG Jinzhong, et al. The research of engineering risk in combustion assisted gravity drainage by using 3D physical modeling[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2009, 31(4): 67-72.
[5] 梁金中, 关文龙, 蒋有伟, 等. 水平井火驱辅助重力泄油燃烧前缘展布与调控[J]. 石油勘探与开发, 2012, 39(6): 720-727.
LIANG Jinzhong, GUAN Wenlong, JIANG Youwei, et al. Propagating characteristics of fire front in combustion assisted gravity drainage process[J]. Petroleum Exploration and Development, 2012, 39(6): 720-727.
[6] 中国石油勘探与生产分公司. 油田注空气开发技术文集(空气火驱技术分册)[M]. 北京: 石油工业出版社, 2014: 212-226.
PetroChina Exploration & Production Company. Proceedings of oilfield air injection development technology (Air injection fireflooding section)[M]. Beijing: Petroleum Industry Press, 2014: 212-226.
[7] 王海生. 辽河稠油油藏火驱辅助重力泄油技术探索及实践[J]. 石油地质与工程, 2014, 28(5): 113-115.
WANG Haisheng. Combustion assisted gravity drainage technology exploration and practice of Liaohe heavy oil reservoirs[J]. Petroleum Geology and Engineering, 2014, 28(5): 113-115.
[8] GREAVES M, XIA T X, TURTA A T, et al. Recent laboratory results of THAI and its comparison with other IOR processes[R]. SPE 59334, 2000.
[9] XIA T X, GREAVES M. Upgrading Athabasca tar sand using toe-to-heel air injection[R]. SPE 65524, 2000.
[10] GREAVES M, AL HONI M. Three-dimensional studies of in-situ combustion: Horizontal wells process with reservoir heterogeneities[J]. Journal of Canadian Petroleum Technology, 2000, 39(10): 25-32.
[11] GREAVES M, DONG L L, RIGBY S P. Validation of toe-to-heel air-injection bitumen recovery using 3D combustion-cell results[R]. SPE 143035, 2012.
[12] 关文龙, 马德胜, 梁金中, 等. 火驱储层区带特征实验研究[J]. 石油学报, 2010, 31(1): 100-104, 109.
GUAN Wenlong, MA Desheng, LIANG Jinzhong, et al. Experimental research of thermodynamic characteristics of in-situ combustion zones in heavy oil reservoir[J]. Acta Petrolei Sinica, 2010, 31(1): 100-104, 109.
[13] 陈莉娟, 潘竟军, 陈龙, 等. 注蒸汽后期稠油油藏火驱配套工艺矿场试验与认识[J]. 石油钻采工艺, 2014, 36(4): 93-96.
CHEN Lijuan, PAN Jingjun, CHEN Long, et al. Field test and understanding of fireflooding matching technology in heavy oil reservoir in later stage of steam injection[J]. Oil Drilling & Production Technology, 2014, 36(4): 93-96.
[14] 关文龙, 席长丰, 陈亚平, 等. 稠油油藏注蒸汽开发后期转火驱技术[J]. 石油勘探与开发, 2011, 38(4): 452-460.
GUAN Wenlong, XI Changfeng, CHEN Yaping, et al. Fire-flooding technologies in post-steam-injected heavy oil reservoir[J]. Petroleum Exploration and Development, 2011, 38(4): 452-460.
[15] 关文龙, 梁金中, 吴淑红, 等. 矿场火驱过程中火线预测与调整方法[J]. 西南石油大学学报(自然科学版), 2011, 33(5): 157-161.
GUAN Wenlong, LIANG Jinzhong, WU Shuhong, et al. Prediction and controlling method of combustion front in the process of fire-flooding development[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2011, 33(5): 157-161.
[16] 梁光跃, 刘尚奇, 沈平平, 等. 油砂蒸汽辅助重力泄油汽液界面智能调控模型优选[J]. 石油勘探与开发, 2016, 43(2): 275-280.
LIANG Guangyao, LIU Shangqi, SHEN Pingping, et al. A new optimization method for steam-liquid level intelligent control model in oil sands steam-assisted gravity drainage (SAGD) process[J]. Petroleum Exploration and Development, 2016, 43(2): 275-280.
[17] 国家能源局. 中华人民共和国石油天然气行业标准: 火烧油层基础参数测定方法: SY/T 6898—2012[S]. 北京: 国家能源局, 2013.
National Energy Administration. China oil and gas industry standard: Experimental testing method of in situ combustion parameters: SY/T 6898-2012[S]. Beijing: National Energy Administration, 2013.
[18] 张守军. 稠油火驱化学点火技术的改进[J]. 特种油气藏, 2016, 23(4): 140-143.
ZHANG Shoujun. Improvements of chemic ignition in fireflooding of heavy oil reservoir[J]. Special Oil & Gas Reservoirs, 2016, 23(4): 140-143.
文章导航

/