油气勘探

各向异性快地层最小水平主应力测井计算方法

  • 刘忠华 ,
  • 宋连腾 ,
  • 王长胜 ,
  • 孙婷 ,
  • 杨小明 ,
  • 李霞
展开
  • 1. 中国石油勘探开发研究院,北京 100083;
    2. 中国石油长庆油田公司勘探开发研究院,西安 710018;
    3. 中海石油有限公司湛江分公司南海西部石油研究院,广东湛江 524057
刘忠华(1977-),男,辽宁北镇人,博士,中国石油勘探开发研究院高级工程师,主要从事勘探测井解释评价方法研究。地址:北京市海淀区学院路20号,中国石油勘探开发研究院测井与遥感技术研究所,邮政编码:100083。E-mail:lzh2004@petrochina.com.cn

收稿日期: 2016-05-31

  修回日期: 2017-07-20

  网络出版日期: 2017-09-18

基金资助

国家科技重大专项(2016ZX05046-002)

Evaluation method of the least horizontal principal stress by logging data in anisotropic fast formations

  • LIU Zhonghua ,
  • SONG Lianteng ,
  • WANG Changsheng ,
  • SUN Ting ,
  • YANG Xiaoming ,
  • LI Xia
Expand
  • 1. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
    2. Exploration and Development Research Institute, Changqing Oilfield Company, Xi’an 710018, China;
    3. Research Institute of Zhanjiang Branch, CNOOC China Limited, Zhanjiang 524057, China

Received date: 2016-05-31

  Revised date: 2017-07-20

  Online published: 2017-09-18

摘要

利用测井资料来准确计算5个独立的刚性系数(C11C33C44C66C13),以解决横观各向同性快地层最小水平主应力的测井计算难题。通过声速各向异性及黏土含量实验测量,分析并建立了声波各向异性系数与黏土含量的函数关系及不同刚性系数之间的转换关系,在此基础上建立了一套利用测井资料计算各向异性快地层刚性系数及最小水平主应力的方法。实际应用表明,该方法与仅适用于慢地层的基于水平横波速度的计算方法互为补充,可用于评价致密油气储集层岩石力学参数,优选压裂试油层段。图8表1参25

本文引用格式

刘忠华 , 宋连腾 , 王长胜 , 孙婷 , 杨小明 , 李霞 . 各向异性快地层最小水平主应力测井计算方法[J]. 石油勘探与开发, 2017 , 44(5) : 745 -752 . DOI: 10.11698/PED.2017.05.09

Abstract

For transverse isotropic fast formations, the evaluation method of the least horizontal principal stress by using logging data is an important unresolved issue. An innovative method is proposed to solve this problem by derivation of five independent stiffness coefficients (C11, C33, C44, C66 and C13) in this kind of formation. Based on the functional relations between acoustic anisotropy coefficients and clay volume, and that between different stiffness coefficients, which are all approved by the assorted experiment data, an effective method is built to calculate the stiffness coefficients and the least horizontal stress of anisotropic fast formations. Successful applications in the Ordos Basin illustrate that the method is complementary to that based on the horizontal shear wave velocity which is only fit for slow formations, and is applicable to evaluating rock mechanical parameters of tight oil and gas reservoirs and selecting intervals for fracturing and testing oil.

参考文献

[1] 赵政璋, 杜金虎. 致密油气[M]. 北京: 石油工业出版社, 2012: 164.
ZHAO Zhengzhang, DU Jinhu. Tight oil and gas[M]. Beijing: Petroleum Industry Press, 2012: 164.
[2] WATERS G, HEINZE J, JACKSON R, et al. Use of horizontal well image tools to optimize Barnett shale reservoir exploitation[R]. SPE 103202, 2006.
[3] CIPOLLA C, MACK M, MAXWELL S. Reducing exploration and appraisal risk in low permeability reservoirs using microseismic fracture mapping[R]. SPE 138103, 2010.
[4] PETERMAN F, MCCARLEY D L, TANNER K V. Hydraulic fracture monitoring as a tool to improve reservoir management[R]. SPE 94048, 2005.
[5] DEGRANGE J M, HAWTHORN A, NAKAJIMA H, et al. Sonic while drilling: Multipole acoustic tools for multiple answers[R]. SPE 128162, 2010.
[6] SHANNON H, SCOTT G, ADAM D, et al. Anisotropic stress models improve completion design in the Baxter Shale[R]. SPE 115736-MS, 2008.
[7] TANG X M. Determining formation shear-wave transverse isotropy from borehole stoneley-wave measurements[J]. Geophysics, 2003, 68(1): 118-126.
[8] SCHOENBERG M, MUIR F, SAYERS C. Introducing Annie: A single three parameter anisotropic velocity model for shales[J]. Journal of Seismic Exploration, 1996, 5(1): 35-49.
[9] LEI T, SINHA B K, SANDERS M. Estimation of horizontal stress magnitudes and stress coefficients of velocities using borehole sonic data[J]. Geophysics, 2011, 77(3): 181.
[10] LO T W, COYNER K B, TOKSOZ M N. Experimental determination of elastic anisotropy of Berea sandstone, Chicopee shale, and Chelmsford granite[J]. Geophysics, 1986, 51(1): 164-171.
[11] VERNIK L, NUR A. Ultrasonic velocity and anisotropy of hydrocarbon source rocks[J]. Geophysics, 1992, 57(5): 728.
[12] WANG Z J. Seismic anisotropy in sedimentary rocks, part 1: A single-plug laboratory method[J]. Geophysics, 2002, 67(5): 1415-1422.
[13] THOMSEN L. Weak elastic anisotropy[J]. Geophysics, 1986, 51(10): 1954-1966.
[14] KATHARA K W. Clay mineral elastic properties[R]. Denver: 66th SEG Annual Meeting, 1996.
[15] MOLLISON R A, SCHON J, FANINI O, et al. A model for hydrocarbon saturation determination from an orthogonal tensor relationship in thinly laminated anisotropic reservoirs[R]. Oslo: SPWLA 40th Annual Logging Symposium, 1999.
[16] SCHOEN J H, MOLLISON R A, GEORGI D T. Macroscopic electrical anisotropy of laminated reservoirs: A tensor resistivity saturation model[R]. SPE 56509, 1999.
[17] GEORGI D, BESPALOV A, TABAROVSKY L, et al. On the relationship between resistivity and permeability anisotropy[R]. SPE 77715, 2002.
[18] SCHON J, GEORGI D, TANG X. Elastic wave anisotropy and shale distribution[R]. New Orleans: SPWLA 46th Annual Logging Symposium, 2005.
[19] WANG Z J. Seismic anisotropy in sedimentary rocks, part 2: Laboratory data[J]. Geophysics, 2002, 67(5): 1437.
[20] ELLIS D V, SINGER J M. Well logging for earth scientists[M]. 2nd ed. Dordrecht: Springer, 2008: 621-624.
[21] HORNBY B E. Tomographic reconstruction of near-borehole slowness using refracted borehole sonic arrivals[J]. Geophysics, 1993, 58(12): 1726-1738.
[22] TANG X M, PATERSON D J. Mapping formation radial shear-wave velocity variation by a constrained inversion of borehole flexural- wave dispersion data[J]. Geophysics, 2010, 75(6): E183-E190.
[23] SU Y D, TANG X M, ZHUANG C X, et al. Mapping formation shear- velocity variation by inverting logging-while-drilling quadrupole-wave dispersion data[J]. Geophysics, 2013, 78(6): D491-D498.
[24] 唐晓明, 许松, 庄春喜, 等. 基于弹性波速径向变化的岩石脆裂性定量评价[J]. 石油勘探与开发, 2016, 43(3): 417-424.
TANG Xiaoming, XU Song, ZHUANG Chunxi, et al. Quantitative evaluation of rock brittleness and fracability based on elastic-wave velocity variation around borehole[J]. Petroleum Exploration and Development, 2016, 43(3): 417-424.
[25] ALLAN A M, VANORIO T, DAHL J E P. Pyrolysis-induced P-wave velocity anisotropy in organic-rich shales[J]. Geophysics, 2014, 79(2): D41-D53.
文章导航

/